Skip to main content
Log in

X-ray carpal bone segmentation and area measurement

  • 1218: Engineering Tools and Applications in Medical Imaging
  • Published:
  • volume 81pages 37321–37332 (2022)
Multimedia Tools and Applications Aims and scope Submit manuscript

Cite this article


A computerized bone age assessment requires segmentation of the X-ray carpal bones from other undesired tissue regions. This paper presents segmentation and area measurement of carpal bones in X-ray images. The locally weighted K-means variational level set was applied in segmenting 67 X-ray carpal bone datasets. Dice coefficient and Hausdorff distance measures show mean values above 0.7 and around 3 pixels, respectively. These satisfying segmentation outcomes enable the carpal bone areas to be measured on the segmented images. The carpal bone area measurement ranged from 4.24 mm to 48.96 mm with a mean value of 20.70 ± 10.51 mm and various values of the Pearson’s correlation coefficient implies that the segmentation method is insensitive to different carpal bone areas and locations. These results suggest that the methods can be applied in the bone age assessment by quantifying changes in the carpal bone area over certain time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Adeshina SA, Lindner C, Cootes TF (2014) Automatic segmentation of carpal area bones with random forest regression voting for estimating skeletal maturity in infants. In: 11th international conference on electronics, computer and computation (ICECCO)

  2. Benedick A, Knapik DM, Duren DL, Sanders JO, Cooperman DR, Lin FC, Liu RW (2021) Systematic isolation of key parameters for estimating skeletal maturity on knee radiographs. J Bone Joint Surg 103(9):795–802

    Article  Google Scholar 

  3. Cao F, Huang HK, Pietka E, Gilsanz V (2000) Digital hand atlas and web-based bone age assessment: system design and implementation. Comput Med Imaging Graph 24:297–307

    Article  Google Scholar 

  4. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  Google Scholar 

  5. Fancourt HS, Lynch JJ, Byrd JE, Stephan CN (2021) Next-generation osteometric sorting: Using 3D shape, elliptical Fourier analysis, and Hausdorff distance to optimize osteological pair-matching. J Forensic Sci 66(3):821–836

    Article  Google Scholar 

  6. Gertych A, Zhang A, Sayre J, P-Kurkowska S, Huang HK (2007) Bone age assessment of children using a digital hand atlas. Comput Med Imaging Graph 31:322–331

    Article  Google Scholar 

  7. Giavarina D (2015) Understanding bland altman analysis. Biochemia Medica, pp 25

  8. Han CC, Lee CH, Peng WL (2007) Hand radiograph image segmentation using a coarse-to-fine strategy. Pattern Recogn 40:2994–3004

    Article  Google Scholar 

  9. Jonsson K (2002) Fundamentals of hand and wrist imaging. Acta Radiol 43:236–236

    Article  Google Scholar 

  10. Kim JR, Shim WH, Yoon HM, Hong SH, Lee JS, Cho YA, Kim S (2017) Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency. Am J Roentgenol 209(6):1374–1380

    Article  Google Scholar 

  11. Koc U, Taydaş O, Bolu S, Elhan AH, Karakas SP (2021) The greulich-Pyle and Gilsanz-Ratib atlas method versus automated estimation tool for bone age: a multi-observer agreement study. Jpn J Radiol 39(267-272):3

    Google Scholar 

  12. Li C, Kao C, Gore C, Ding Z (2008) Minimization of region scalable fitting energy for image segmentation. IEEE Trans Image Process 17 (10):1940–1949

    Article  MathSciNet  Google Scholar 

  13. Li C, Huang R, Ding Z, Gatenby C, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016

    Article  MathSciNet  Google Scholar 

  14. Li S, Liu B, Li S, Zhu X, Yan Y, Zhang D (2021) A deep learning-based computer-aided diagnosis method of X-ray images for bone age assessment. Complex Intell Syst 31:1–11

    Google Scholar 

  15. Liu J, Qi J, Liu Z, Ning Q, Luo X (2008) Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method. Comput Med Imaging Graph 32:678–684

    Article  Google Scholar 

  16. Liu J, Qi J, Liu Z, Ning Q, Luo X (2010) An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones. IEEE Trans Instrum Meas 59:2539–2553

    Article  Google Scholar 

  17. Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee EJ (2000) Skeletal growth estimation using radiographic image processing and analysis. IEEE Trans Inf Technol Biomed 4:292–297

    Article  Google Scholar 

  18. McGill D (2021) Bone age. Endocrine conditions in pediatrics pp 215–218

  19. Meng LK, Khalil A, Nizar MHA, Nisham MK, Pingguan-Murphy B, YC Hum MIMS, Lai KW (2019) Carpal bone segmentation using fully convolutional neural network. Curr Med Imaging Rev 15(10):983–989

    Article  Google Scholar 

  20. Peloschek P, Nemec S, Widhalm P, Donner R, Birngruber E, Thodberg HH, Kainberger F, Langs G (2009) Computational radiology in skeletal radiography. Eur J Radiol 72:252–257

    Article  Google Scholar 

  21. Pietka E, Kaabi L, Kuo ML, Huang HK (1993) Feature extraction in carpal-bone analysis. IEEE Trans Med Imaging 12:44–49

    Article  Google Scholar 

  22. Sebastian TB, Tek H, Crisco JJ, Kimia BB (2003) Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med Image Anal 7:21–45

    Article  Google Scholar 

  23. Somkantha K, Theera-Umpon N, Auephanwiriyakul S (2011) Bone age assessment in young children using automatic carpal bone feature extraction and support vector regression. J Digit Imaging 24(6):1044–1058

    Article  Google Scholar 

  24. Sotoca JM, Iñesta J M, Belmonte MA (2003) Hand bone segmentation in radioabsorptiometry images for computerised bone mass assessment. Comput Med Imaging Graph 27:459–467

    Article  Google Scholar 

  25. Sotoca JM, Iñesta J M, Belmonte MA (2007) Segmentation of regions of interest and post-segmentation edge location improvement in computer-aided bone age assessment. Pattern Anal Appl 10:115–123

    Article  MathSciNet  Google Scholar 

  26. Su L, Fu X, Zhang X, Cheng X, Ma Y, Gan Y, Hu Q (2018) Delineation of carpal bones from hand X-ray images through prior model and integration of region-based and boundary-based segmentations. IEEE Access 6:2169–3536

    Article  Google Scholar 

  27. Tanner J, Whitehouse R (1975) Assessment of skeletal maturity and prediction of adult height (TW2 method). Am J Hum Biol

  28. Tanner JM, Gibbons RD (1994) Automatic bone age measurement using computerized image analysis. J Pediatr Endocrinol 7:141–145

    Article  Google Scholar 

  29. Tustison N, Gee JC (2009) Introducing Dice, Jaccard, and other label overlap measures to ITK. Insight J pp 2

  30. Zhang A, Gertych A, Liu BJ (2007) Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput Med Imaging Graph 31:299–310

    Article  Google Scholar 

  31. Zhang K, Zhang L, Song H, Zhang D (2013) Reinitialization-free level set evolution via reaction diffusion. IEEE Trans Image Process 22(1):258–271

    Article  MathSciNet  Google Scholar 

  32. Zhang K, Zhang L, Lam KM, Zhang D (2016) A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans Cybern 46 (2):546–557

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Amir Faisal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faisal, A., Khalil, A., Chai, H.Y. et al. X-ray carpal bone segmentation and area measurement. Multimed Tools Appl 81, 37321–37332 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: