Skip to main content
Log in

Image steganalysis with entropy hybridized with chaotic grasshopper optimizer

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We propose a hybrid grasshopper optimizer to reduce the size of the feature set in the steganalysis process using information theory and other stochastic optimization techniques. This paper results from the stagnancy of local minima and slow convergence rate by the grasshopper algorithm in optimization problems. Therefore, we enhance the grasshopper optimization (GOA) performance with chaotic maps to make it Chaotic GOA (CGOA). Then, we combine the CGOA with adaptive particle swarm optimization (APSO) to make it Chaotic Particle-Swarm Grasshopper Optimization Algorithm (CPGOA). Next, we use the proposed optimizer with entropy to find the best feature subset of the original Subtractive Pixel Adjacency Model (SPAM) and Spatial Rich Model (SRM) feature set. Finally, the proposed technique is experimented with to detect the spatial domain steganography with different embedding rates on the BOSSbase 1.01 grayscale image database. The results show the improved results from the proposed hybrid optimizer compared to the original GOA and other state-of-the-art feature selection methods in steganalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdulla AA (2015) Exploiting similarities between secret and cover images for improved embedding efficiency and security in digital steganography. Doctoral thesis, Univ. Buckingham, UK

  2. Bansal S (2020) Performance comparison of five metaheuristic nature-inspired algorithms to find near-OGRs for WDM systems. Artif Intell Rev. https://doi.org/10.1007/s10462-020-09829-2

  3. Bas P, Filler T, Pevný T (2011) Break our steganographic system: the ins and outs of organizing BOSS. In: Filler T et al (eds) Information hiding. LNCS 6958, pp 59–70. https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  4. Boroumand M, Chen M, Fridrich J (2019) Deep residual network for steganalysis of digital images. IEEE Trans Inf Forensic Secur 14(5):1181–1193. https://doi.org/10.1109/TIFS.2018.2871749

    Article  Google Scholar 

  5. Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64:1695–1724. https://doi.org/10.1057/jors.2013.71

    Article  Google Scholar 

  6. Chen X, Wang Y, Tan T, Guo L (2006) Blind image steganalysis based on statistical analysis of empirical matrix. In: Proc. 18th Int. Conf. Pattern recognition, Hong Kong, pp. 1107-1110. https://doi.org/10.1109/ICPR.2006.332

  7. Chhikara S, Kumar R (2020) An information theoretic image steganalysis for LSB steganography. Acta Cybern 24(4):593–612. https://doi.org/10.14232/actacyb.279174

    Article  MathSciNet  MATH  Google Scholar 

  8. Chhikara S, Kumar R (2020) MI-LFGOA: multi-island levy-flight based grasshopper optimization for spatial image steganalysis. Multimed Tools Appl 79(39):29723–29750. https://doi.org/10.1007/s11042-020-09328-0

    Article  Google Scholar 

  9. Chhikara RR, Sharma P, Singh L (2016) A hybrid feature selection approach based on improved PSO and filter approaches for image steganalysis. Int J Mach Learn Cybern 7:1195–1206. https://doi.org/10.1007/s13042-015-0448-0

    Article  Google Scholar 

  10. Chhikara RR, Sharma P, Singh L (2018) An improved dynamic discrete firefly algorithm for blind image steganalysis. Int J Mach Learn Cybern 9:821–835. https://doi.org/10.1007/s13042-016-0610-3

    Article  Google Scholar 

  11. Christaline JA, Ramesh R, Gomathy C, Vaishali D (2017) Bio inspired optimization for universal spatial image steganalysis. J Comput Sci 21:182–188. https://doi.org/10.1016/j.jocs.2017.06.014

    Article  Google Scholar 

  12. Dumitrescu S, Wu X, Wang Z (2003) Detection of LSB steganography via sample pair analysis. IEEE Trans Signal Process 51(7):1995–2007. https://doi.org/10.1109/TSP.2003.812753

    Article  MATH  Google Scholar 

  13. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inf Forensic Secur 7(3):868–882. https://doi.org/10.1109/TIFS.2012.2190402

    Article  Google Scholar 

  14. Fridrich J, Long M (2000) Steganalysis of LSB encoding in color images. In: Proc IEEE Int Conf on Multimedia & Expo (Cat No00TH8532) vol. 3, pp. 1279-1282. https://doi.org/10.1109/ICME.2000.871000

  15. Fridrich J, Goljan M, Du R (2001) Detecting LSB steganography in color and grayscale images. IEEE Multimedia Mag Spec Issue Secur 8:22–28. https://doi.org/10.1109/93.959097

    Article  Google Scholar 

  16. Ghareh FG, Abadeh MS (2014) Image steganalysis using a bee colony based feature selection algorithm. Eng Appl Artif Intell 31:35–43. https://doi.org/10.1016/j.engappai.2013.09.016

    Article  Google Scholar 

  17. Guettari N, Capelle-Laize AS, Carre P (2016) Blind image steganalysis based on evidential k-nearest neighbors. In: Proc. IEEE Int. Conf. Image Processing, pp. 2742-2746. https://doi.org/10.1109/ICIP.2016.7532858

  18. Guo L, Li Q, Chen F (2011) A novel cluster-head selection algorithm based on hybrid genetic optimization for wireless sensor networks. J Netw 6(5):815–822. https://doi.org/10.4304/jnw.6.5.815-822

    Article  Google Scholar 

  19. Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. In: Proc. IEEE Int. Workshop Info Forensics & Security, Tenerife, pp. 234-239. https://doi.org/10.1109/WIFS.2012.6412655

  20. Holub V, Fridrich J (2015) Low-complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans Inf Forensic Secur 10(2):219–228. https://doi.org/10.1109/TIFS.2014.2364918

    Article  Google Scholar 

  21. Jackson JE (2003) A users guide to principal components. Wiley. https://doi.org/10.1002/0471725331

    Book  Google Scholar 

  22. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc Int Conf Neural Netw 4:1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Article  Google Scholar 

  23. Khan MA (2019) New image encryption using chaotic maps. In: Proc. 3rd Int. Conf. Vision, image signal processing, article no 3, pp. 1–6. https://doi.org/10.1145/3387168.3389111

  24. Kodovsky J, Fridrich J (2009) Calibration revisited. In: Proc. 11th ACM multimedia and security workshop, Princeton, pp. 63-74. https://doi.org/10.1145/1597817.1597830

  25. Kodovský J, Fridrich J (2012) Steganalysis of JPEG images using rich models. In: Proc. Media Watermarking, Security Forensics, 8303. https://doi.org/10.1117/12.907495

  26. Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans Inf Forensic Secur 7(2):432–444. https://doi.org/10.1109/TIFS.2011.2175919

    Article  Google Scholar 

  27. Kumar R, Banerjee N (2011) Multiobjective network topology design. Appl Soft Comput 11(8):5120–5128. https://doi.org/10.1016/j.asoc.2011.05.047

    Article  Google Scholar 

  28. Kumar R, Singh PK (2010) Assessing solution quality of biobjective 0-1 knapsack problem using evolutionary and heuristic algorithms. Appl Soft Comput 10(3):711–718. https://doi.org/10.1016/j.asoc.2009.08.037

    Article  Google Scholar 

  29. Lafferty P, Ahmad F (2004) Texture based steganalysis: results for color images. In: proc. SPIE, mathematics of data/image coding, compression, and encryption VII, with applications, vol. 5561. https://doi.org/10.1117/12.559896

  30. Leach KN (2002). A survey paper on independent component analysis. In: Proc 34th southeastern Symp. System theory, Cat. No.02EX540, pp. 239-242. https://doi.org/10.1109/SSST.2002.1027042

  31. Leng L, Zhang J (2012) Palmhash code for palmprint verification and protection. In: Proc. 25th IEEE Canadian Conf. Electrical Computer Engineering, pp. 1-4. https://doi.org/10.1109/CCECE.2012.6334853

  32. Leng L, Zhang J (2013) PalmHash code vs. PalmPhasor Code. Neurocomputing 108:1–12. https://doi.org/10.1016/j.neucom.2012.08.028

    Article  Google Scholar 

  33. Leng L et al (2010) Dynamic weighted discrimination power analysis: a novel approach for face and palmprint recognition in DCT domain. Int Journal Phys Sci 5(17):467–471. https://doi.org/10.1109/ICTC.2010.5674791

    Article  Google Scholar 

  34. Leng L, Zhang J, Chen G, Khan MK, Alghathbar K (2011) Two-directional two-dimensional random projection and its variations for face and palmprint recognition. In: Proc. Int. Conf. Computational science and its applications, LNCS 6786. https://doi.org/10.1007/978-3-642-21934-4_37

  35. Leng L, Zhang S, Bi X, Khan MK (2012) Two-dimensional cancelable biometric scheme. In: Proc. Int. Conf. Wavelet Analysis and Pattern Recognition, pp. 164-169, https://doi.org/10.1109/ICWAPR.2012.6294772

  36. Leng L et al (2013) Conjugate 2D PalmHash code for secure palm-print-vein verification. In: Proc. 6th Int. Congress Image Signal Processing, pp. 1705-1710. https://doi.org/10.1109/CISP.2013.6743951

  37. Leng L et al (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76:333–354. https://doi.org/10.1007/s11042-015-3058-7

    Article  Google Scholar 

  38. Li Y, Jiao L, Li P, Wu B (2014) A hybrid memetic algorithm for global optimization. Neurocomputing 134:132–139. https://doi.org/10.1016/j.neucom.2012.12.068

    Article  Google Scholar 

  39. Mageshkumar C, Karthik S, Arunachalam VP (2019) Hybrid metaheuristic algorithm for improving the efficiency of data clustering. Clust Comput 22:435–442. https://doi.org/10.1007/s10586-018-2242-8

    Article  Google Scholar 

  40. Martinez A, Kak A (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233. https://doi.org/10.1109/34.908974

    Article  Google Scholar 

  41. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  42. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  43. Pathak Y, Arya KV, Tiwari S (2018) Feature selection for image steganalysis using levy flight-based grey wolf optimization. Multimed Tools Appl 78(2):1473–1494. https://doi.org/10.1007/s11042-018-6155-6

    Article  Google Scholar 

  44. Pevny T, Fridrich, J (2007) Merging Markov and DCT features for multi-class JPEG steganalysis. In: Proc. SPIE Security Steganography Watermarking Multimedia Contents IX, 6505. https://doi.org/10.1117/12.696774

  45. Pevny T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography. In: Proc. 12th Int. workshop information hiding, Calgary, pp. 161-177. https://doi.org/10.5555/1929304.1929317

  46. Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Forensic Secur 5:215–224. https://doi.org/10.1145/1597817.1597831

    Article  Google Scholar 

  47. Provos N (2001) Defending against statistical steganalysis. In: Proc. 10th USENIX security symposium, Washington, D.C., article 24, pages 14. https://doi.org/10.5555/1251327.1251351

  48. Raidl GR (2006) A unified view on hybrid metaheuristics. In: Almeida F et al (eds) Hybrid metaheuristics. LNCS 4030. https://doi.org/10.1007/11890584_1

    Chapter  MATH  Google Scholar 

  49. Saha S, Kumar R, Baboo G (2013) Characterization of graph properties for improved Pareto fronts using heuristics and EA for bi-objective graph coloring problem. Appl Soft Comput 13(5):2812–2822. https://doi.org/10.1016/j.asoc.2012.06.021

    Article  Google Scholar 

  50. Sankpal PR, Vijaya PA (2014) Image encryption using chaotic maps: a survey. In: Proc 5th Int. Conf. Signal Image Processing, pp. 102-107. https://doi.org/10.1109/ICSIP.2014.80.

  51. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  52. Shi YQ et al (2005) Image steganalysis based on moments of characteristic functions using wavelet decomposition, prediction-error image and neural network. In. Proc. IEEE Int. Conf. Multimedia & Expo, Amsterdampp. https://doi.org/10.1109/ICME.2005.1521412

  53. Song X, Liu F, Yang C, Luo X, Zhang Y (2015). Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In: Proc. 3rd ACM workshop info hiding multimedia security, pp. 15-23. https://doi.org/10.1145/2756601.2756608

  54. Ting TO, Yang XS, Cheng S, Huang K (2015) Hybrid metaheuristic algorithms: past, present, and future. In: Yang XS (ed) Recent advances in swarm intelligence and evolutionary computation, vol 585. Studies Computational Intelligence, pp 71–83. https://doi.org/10.1007/978-3-319-13826-8_4

    Chapter  Google Scholar 

  55. Westfeld A, Pfitzmann A (1999) Attacks on steganographic systems. In: Proc. Information Hiding, Third Int. Workshop, Dresden, pp. 61–75

  56. Yang XS, Deb S (2013) Multi-objective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624. https://doi.org/10.1016/j.cor.2011.09.026

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483. https://doi.org/10.1108/02644401211235834

    Article  Google Scholar 

  58. Zhan Z, Zhang J, Li Y, Chung HS (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 39(6):1362–1381. https://doi.org/10.1109/TSMCB.2009.2015956

    Article  Google Scholar 

  59. Zhang L, Liao X, Wang X (2005) An image encryption approach based on chaotic maps. Chaos, Solitons Fractals 24(3):759–765. https://doi.org/10.1016/j.chaos.2004.09.035

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhao X, Huang L, Li L, Yang W, Chen Z, Yu, Z (2009) Steganalysis on character substitution using support vector machine. In: Proc. 2nd Int. Workshop Knowledge Discovery & Data Mining, pp. 84-88. https://doi.org/10.1109/WKDD.2009.105

  61. Zou D, Shi YQ, Su W, Xuan G (2006) Steganalysis based on Markov model of thresholded prediction-error image. In: Proc. IEEE Int. Conf. Multimedia & Expo, Toronto, pp. 1365-1368. https://doi.org/10.1109/ICME.2006.262792

Download references

Acknowledgments

One of the authors, Rajeev Kumar thanks the reviewers for their valuable comments, by which the understanding and readability of this manuscript are greatly improved. He also thanks a member of his research group, Priti Kumari, for drawing a few figures. Finally, he is thankful to the Editor-in-Chief, the Editor, and the Editorial Office Assistant(s) for managing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar.

Additional information

Sonam Chhikara Deceased on Dec. 16, 2019. This article is dedicated to her memory.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhikara, S., Kumar, R. Image steganalysis with entropy hybridized with chaotic grasshopper optimizer. Multimed Tools Appl 80, 31865–31885 (2021). https://doi.org/10.1007/s11042-021-11118-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11118-1

Keywords

Navigation