Skip to main content

Advertisement

Log in

Convolution neural network and deep-belief network (DBN) based automatic detection and diagnosis of Glaucoma

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Diagnosis of Glaucoma eye disease is a challenging task for CADx (computer-aided diagnostics) systems. An automatic CADx framework is developed for diagnosing glaucoma eye disease by handcrafted feature-based segmentation in retinal images. In this manuscript, automatic glaucoma eye disease detection based on deep learning (DL), with deep-belief network (DBN) is proposed. In addition, a contextualizing DL structure is proposed for obtaining various levels of portraying fundus images to separate among glaucoma and non-glaucoma modes, where the network uses output of other CNNs as information of context to support performance. The3 existing machine learning models are (1) SVM (support vector machine) (2) RF (random forest)(3) k-NN (k-nearest neighbor), which is executed and assessed on tests. The efficiency of the Glaucoma-Deep model is analyzed by the statistical measures like sensitivity, specificity, accuracy, precision. Finally, an official conclusion executed through the softmax straight classifier is to divide glaucoma and non-glaucoma retinal fundus images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel Maksoud E, Ramadan M, Barakat S, Elmogy M (2019) A computer-aided diagnoses system for detecting multiple ocular diseases using color retinal fundus images. Machine learning in bio-signal analysis and diagnostic imaging 19-52. https://doi.org/10.1016/b978-0-12-816086-2.00002-3

  2. Acharya U, Ng E, Eugene L et al (2015) Decision support system for the glaucoma using Gabor transformation. Biomedical Signal Process Control 15:18–26. https://doi.org/10.1016/j.bspc.2014.09.004

    Article  Google Scholar 

  3. Acharya U, Bhat S, Koh J et al (2017) A novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus images. Comput Biol Med 88:72–83. https://doi.org/10.1016/j.compbiomed.2017.06.022

    Article  Google Scholar 

  4. Araújo J, Souza J, Neto O et al (2018) Glaucoma diagnosis in fundus eye images using diversity indexes. Multimed Tools Appl 78:12987–13004. https://doi.org/10.1007/s11042-018-6429-z

    Article  Google Scholar 

  5. Asaoka R, Murata H, Hirasawa K, Fujino Y, Matsuura M, Miki A, Kanamoto T, Ikeda Y, Mori K, Iwase A, Shoji N, Inoue K, Yamagami J, Araie M (2019) Using deep learning and transfer learning to accurately diagnose early-onset Glaucoma from macular optical coherence tomography images. Am J Ophthalmol 198:136–145. https://doi.org/10.1016/j.ajo.2018.10.007

    Article  Google Scholar 

  6. Bechar M, Settouti N, Barra V, Chikh M (2017) Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidim Syst Sign Process 29:979–998. https://doi.org/10.1007/s11045-017-0483-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Butt N, Ayub M, Ali M (2016) Challenges in the management of glaucoma in developing countries. Taiwan J Ophthalmol 6:119–122. https://doi.org/10.1016/j.tjo.2016.01.004

    Article  Google Scholar 

  8. Chandrawati R, Chang J, Reina-Torres E et al (2017) Localized and controlled delivery of nitric oxide to the conventional outflow pathway via enzyme biocatalysis: toward therapy for Glaucoma. Adv Mater 29:1604932. https://doi.org/10.1002/adma.201604932

    Article  Google Scholar 

  9. de Sousa J, de Paiva A, Sousa de Almeida J et al (2017) Texture based on geostatistic for glaucoma diagnosis from fundus eye image. Multimed Tools Appl 76:19173–19190. https://doi.org/10.1007/s11042-017-4608-y

    Article  Google Scholar 

  10. Devasia T, Jacob K, Thomas T (2018) Automatic early stage Glaucoma detection using cascade correlation neural network. Smart Intell Comput Appl:659–669. https://doi.org/10.1007/978-981-13-1921-1_64

  11. Dong Z, Wollstein G, Wang B, Schuman J (2017) Adaptive optics optical coherence tomography in glaucoma. Prog Retin Eye Res 57:76–88. https://doi.org/10.1016/j.preteyeres.2016.11.001

    Article  Google Scholar 

  12. Ekinci G, Calikoglu A, Solak S et al (2017) Split-ring resonator-based sensors on flexible substrates for glaucoma monitoring. Sensors Actuators A Phys 268:32–37. https://doi.org/10.1016/j.sna.2017.10.054

    Article  Google Scholar 

  13. Elseid A, Arwa O, Gasm A et al (2018) Glaucoma detection based on shape features and SMOTE algorithm. CiiT Int J Digit Image Process 10:10–60. https://doi.org/10.4258/hir.2018.24.1.53

    Article  Google Scholar 

  14. Faust O, Acharya U, Sudarshan V et al (2017) Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review. PhysicaMedica 33:1–15. https://doi.org/10.1016/j.ejmp.2016.12.005

    Article  Google Scholar 

  15. Fu H, Xu Y, Lin S, Zhang X, Wong DWK, Liu J, Frangi AF, Baskaran M, Aung T (2017) Segmentation and quantification for angle-closure Glaucoma assessment in anterior segment OCT. IEEE Trans Med Imaging 36:1930–1938. https://doi.org/10.1109/tmi.2017.2703147

    Article  Google Scholar 

  16. Gour N, Khanna P (2019) Automated glaucoma detection using GIST and pyramid histogram of oriented gradients (PHOG) descriptors. Pattern Recogn Lett 137:3–11. https://doi.org/10.1016/j.patrec.2019.04.004

    Article  Google Scholar 

  17. Guo L, Yang J, Peng L et al (2015) A computer-aided healthcare system for cataract classification and grading based on fundus image analysis. Comput Ind 69:72–80. https://doi.org/10.1016/j.compind.2014.09.005

    Article  Google Scholar 

  18. Guo J, Azzopardi G, Shi C, Jansonius NM, Petkov N (2019) Automatic determination of vertical cup-to-disc ratio in retinal fundus images for Glaucoma screening. IEEE Access 7:8527–8541. https://doi.org/10.1109/access.2018.2890544

    Article  Google Scholar 

  19. Gupta D, Asrani S (2016) Macular thickness analysis for glaucoma diagnosis and management. Taiwan J Ophthalmol 6:3–7. https://doi.org/10.1016/j.tjo.2016.01.003

    Article  Google Scholar 

  20. Hagiwara Y, Koh J, Tan J et al (2018) Computer-aided diagnosis of glaucoma using fundus images: a review. Comput Methods Prog Biomed 165:1–12. https://doi.org/10.1016/j.cmpb.2018.07.012

    Article  Google Scholar 

  21. High-Resolution Fundus (HRF) (n.d.) Image Database. https://www5.cs.fau.de/research/data/fundus-images/. Accessed date: 2/1/2016

  22. Issac A, ParthaSarathi M, Dutta M (2015) An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput Methods Prog Biomed 122:229–244. https://doi.org/10.1016/j.cmpb.2015.08.002

    Article  Google Scholar 

  23. Juneja M, Singh S, Agarwal N, Bali S, Gupta S, Thakur N, Jindal P (2019) Automated detection of Glaucoma using deep learning convolution network (G-net). Multimed Tools Appl 79(21–22):15531–15553. https://doi.org/10.1007/s11042-019-7460-4

    Article  Google Scholar 

  24. Kavya N, Padmaja K (2017) Glaucoma detection using texture features extraction. 2017 51st Asilomar Conference on Signals, Systems, and Computers https://doi.org/10.1109/acssc.2017.8335600

  25. Koh J, Acharya U, Hagiwara Y et al (2017) Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies. Comput Biol Med 84:89–97. https://doi.org/10.1016/j.compbiomed.2017.03.008

    Article  Google Scholar 

  26. Lavinsky F, Wollstein G, Tauber J, Schuman J (2017) The future of imaging in detecting Glaucoma progression. Ophthalmology 124:S76–S82. https://doi.org/10.1016/j.ophtha.2017.10.011

    Article  Google Scholar 

  27. Lee W, Kim Y, Park K, Jeoung J (2017) Trend-based analysis of ganglion cell–inner plexiform layer thickness changes on optical coherence tomography in Glaucoma progression. Ophthalmology 124:1383–1391. https://doi.org/10.1016/j.ophtha.2017.03.013

    Article  Google Scholar 

  28. Maheshwari S, Kanhangad V, Pachori R et al (2019) Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Comput Biol Med 105:72–80. https://doi.org/10.1016/j.compbiomed.2018.11.028

    Article  Google Scholar 

  29. Mahiba C, Jayachandran A (2019) Severity analysis of diabetic retinopathy in retinal images using hybrid structure descriptor and modified CNNs. Measurement 135:762–767. https://doi.org/10.1016/j.measurement.2018.12.032

    Article  Google Scholar 

  30. Mohamed N, Zulkifley M, Zaki W, Hussain A (2019) An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach. Biomedical Signal Processing and Control 53:101454. https://doi.org/10.1016/j.bspc.2019.01.003

    Article  Google Scholar 

  31. Mvoulana A, Kachouri R, Akil M (2019) Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Comput Med Imaging Graph 77:101643. https://doi.org/10.1016/j.compmedimag.2019.101643

    Article  Google Scholar 

  32. Mythili S, Thiyagarajah K, Rajesh P, Shajin FH (2020) Ideal position and size selection of unified power flow controllers (UPFCs) to upgrade the dynamic stability of systems: an antlion optimiser and invasive weed optimisation algorithm. HKIE Trans 27:25–37. https://doi.org/10.33430/V27N1THIE-2018-0024

    Article  Google Scholar 

  33. Ohlemacher S, Sridhar A, Xiao Y et al (2016) Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells 34:1553–1562. https://doi.org/10.1002/stem.2356

    Article  Google Scholar 

  34. Perdomo O, Andrearczyk V, Meriaudeau F et al. (2018) Glaucoma diagnosis from eye fundus images based on deep morphometric feature estimation computational pathology and ophthalmic medical image analysis 319-327. https://doi.org/10.1007/978-3-030-00949-6_38

  35. Raghavendra U, Fujita H, Bhandary S et al (2018) Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci 441:41–49. https://doi.org/10.1016/j.ins.2018.01.051

    Article  MathSciNet  Google Scholar 

  36. Raghavendra U, Bhandary S, Gudigar A, Acharya U (2018) Novel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus images. Biocybernetics Biomed Eng 38:170–180. https://doi.org/10.1016/j.bbe.2017.11.002

    Article  Google Scholar 

  37. Raghavendra U, Gudigar A, Bhandary S et al (2019) A two layer sparse autoencoder for Glaucoma identification with fundus images. J Med Syst 43:299. https://doi.org/10.1007/s10916-019-1427-x

    Article  Google Scholar 

  38. Saba T, Bokhari S, Sharif M et al (2018) Fundus image classification methods for the detection of glaucoma: a review. Microsc Res Tech 81:1105–1121. https://doi.org/10.1002/jemt.23094

    Article  Google Scholar 

  39. Sarathi M, Dutta M, Singh A, Travieso C (2016) Blood vessel inpainting based technique for efficient localization and segmentation of optic disc in digital fundus images. Biomed Signal Process Control 25:108–117. https://doi.org/10.1016/j.bspc.2015.10.012

    Article  Google Scholar 

  40. Serener A, Serte S (2019) Transfer learning for early and advanced Glaucoma detection with convolutional neural networks. 2019 Medical Technologies congress (TIPTEKNO). https://doi.org/10.1109/tiptekno.2019.8894965

  41. Sevastopolsky A (2017) Optic disc and cup segmentation methods for glaucoma detection with modification of U-net convolutional neural network. Pattern Recognit Image Anal 27:618–624. https://doi.org/10.1134/s1054661817030269

    Article  Google Scholar 

  42. Shi Y, Marion K, Jenkins D et al (2019) Identification and characterization of imaging technique errors and artifacts using anterior-segment OCT for Irido-corneal angle evaluations in Glaucoma. Ophthalmol Glaucoma 2:136–144. https://doi.org/10.1016/j.ogla.2019.02.006

    Article  Google Scholar 

  43. Shinoj VK, Hong XJ, Murukeshan VM, Baskaran M, Tin A (2016) Progress in anterior chamber angle imaging for glaucoma risk prediction – a review on clinical equipment, practice and research. Med Eng Phys 38:1383–1391. https://doi.org/10.1016/j.medengphy.2016.09.014

  44. Sjchoi86-HRF dataset (n.d.): https://github.com/sjchoi86/retina_dataset/tree/master/dataset. Access date: 26/1/2017

  45. Soorya M, Issac A, Dutta M (2019) Automated framework for screening of Glaucoma through cloud computing. J Med Syst 43:136. https://doi.org/10.1007/s10916-019-1260-2

    Article  Google Scholar 

  46. Transpire Online (2019) A novel numerical optimization algorithm inspired from particles: particle swarm optimization, transpire Online 2019. Available at: https://transpireonline.blog/2019/07/03/a-novel-numerical-optimization-algorithm-inspired-from-particles-particle-swarm-optimization/. Accessed on: Sep 2019

  47. Yu S, Xiao D, Frost S, Kanagasingam Y (2019) Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imaging Graph 74:61–71. https://doi.org/10.1016/j.compmedimag.2019.02.005

    Article  Google Scholar 

  48. Zilly J, Buhmann J, Mahapatra D (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41. https://doi.org/10.1016/j.compmedimag.2016.07.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naganagouda Patil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, N., Patil, P.N. & Rao, P.V. Convolution neural network and deep-belief network (DBN) based automatic detection and diagnosis of Glaucoma. Multimed Tools Appl 80, 29481–29495 (2021). https://doi.org/10.1007/s11042-021-11087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11087-5

Keywords

Navigation