Skip to main content
Log in

Image segmentation based on multiscale fast spectral clustering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Spectral clustering is a popular clustering algorithm, which has a large number of applications in image segmentation tasks. However, its applicability becomes difficult for high-resolution images due to high computational complexity. In this paper, we first propose a novel Fast Spectral Clustering algorithm based on quad-tree decomposition. The algorithm focuses on the spectral clustering at the superpixel level and its time complexity is \(O(n\log n)+O(m)+O(m^{\frac {3}{2}})\), its space complexity is O(m), where n and m represent the number of pixels and superpixels in an image, respectively. Then we propose Multiscale Fast Spectral Clustering by improving Fast Spectral Clustering, which is a bottom-up method based on the quad-tree and the related hierarchical structure. In this method, according to the hierarchical structure generated by the quad-tree, treating the child node’s segmentation result as the superpixel of the parent node, the child nodes at the fine level can be merged into the parent nodes at the coarse level. The time complexity of Multiscale Fast Spectral Clustering is \(O(n\log n)\) and its space complexity is O(m). Extensive experiments on both the Weizmann and BSDS500 segmentation datasets demonstrate that Multiscale Fast Spectral Clustering outperforms Normalized cut, a classical spectral clustering method, in terms of lower computational complexity and memory cost, with comparable clustering accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://www.cis.upenn.edu/~jshi/software/

References

  1. Achanta R et al (2012) SLIC superpixels compared to state-of-the-art superpixel methods. Trans Pattern Anal Mach Intell 34(11). https://doi.org/10.1109/TPAMI.2012.120

  2. Allen LS, Richey MF et al (1991) Sex differences in the corpus callosum of the living human being. J Neurosci 11(4):933–942. https://doi.org/10.1523/jneurosci.11-04-00933.1991

    Article  Google Scholar 

  3. Anil K, Jain M, Murty N, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323. https://doi.org/10.1145/331499.331504

    Article  Google Scholar 

  4. Arbelaez P, Maire M, Fowlkes C et al (2011) Contour detection and hierarchical image segmentation. Trans Pattern Anal Mach Intell 33 (5):898–916. https://doi.org/10.1109/TPAMI.2010.161

    Article  Google Scholar 

  5. Balla-Arab S, Gao X, Wang B (2013) A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. Trans Cybern 43(3):910–920. https://doi.org/10.1109/TSMCB.2012.2218233

    Article  Google Scholar 

  6. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comput Geosci 10(2-3):191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  7. Cai D, Chen X (2015) Large scale spectral clustering via landmark-based sparse representation. Trans Cybern 45(8):1669–1680. https://doi.org/10.1109/TCYB.2014.2358564

    Article  Google Scholar 

  8. Cao J et al (2014) Local information-based fast approximate spectral clustering. Pattern Recogn Lett 38(1):63–69. https://doi.org/10.1016/j.patrec.2013.11.005

    Article  Google Scholar 

  9. Chew SE, Cahill ND (2015) Semi-supervised normalized cuts for image segmentation. In: Proc international conference on computer vision (ICCV). https://doi.org/10.1109/ICCV.2015.200

  10. Chu J, Guo Z, Leng L (2018) Object detection based on multi-layer convolution feature fusion and online hard example mining. IEEE Access 6:19959–19967. https://doi.org/10.1109/ACCESS.2018.2815149

    Article  Google Scholar 

  11. Cour T, Benezit F, Shi J (2005) Spectral segmentation with multiscale graph decomposition. In: 2005 Computer society conference on computer vision and pattern recognition (CVPR’05). https://doi.org/10.1109/CVPR.2005.332, vol 2, pp 1124–1131

  12. Davatzikos C, Vaillant M et al (1996) A computerized approach for morphological analysis of the corpus callosum. J Comput Assist Tomogr 20(1):88–97. https://doi.org/10.1097/00004728-199601000-00017

    Article  Google Scholar 

  13. Dice LEER (1945) Measures of the amount of ecologic association between species. Ecol 26(3):297–302. https://doi.org/10.2307/1932409

    Article  Google Scholar 

  14. Elsayed A et al (2010) Corpus callosum MR image classification. In: Research and development in intelligent systems XXVI. https://doi.org/10.1007/978-1-84882-983-1_27. Springer, London, pp 333–346

  15. Felzenszwalb P, Huttenlocher D (2004) Efficient graphbased based image segmentation. Int J Comput Vis 59(2):167–181. https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  Google Scholar 

  16. Filippone M et al (2008) A survey of kernel and spectral methods for clustering. Pattern Recogn 41(1):176–190. https://doi.org/10.1016/j.patcog.2007.05.018

    Article  Google Scholar 

  17. Fowlkes C, Belongie S, Chung F, Malik J (2004) Spectral grouping using the Nystrom method. Trans Pattern Anal Mach Intell 26(2):214–225. https://doi.org/10.1109/TPAMI.2004.1262185

    Article  Google Scholar 

  18. Hagen L, Kahng AB (1992) New spectral methods for ratio cut partitioning and clustering. Trans Comput Aid Des Ofintegrated Circ Syst 11(9):1074–1085. https://doi.org/10.1109/43.159993

    Article  Google Scholar 

  19. Hartigan JA, Wong MA (1979) Algorithm AS 136: A k-means clustering algorithm. J Royal Stat Soc Series C Appl Stat 28(1):100–108. https://doi.org/10.2307/2346830

    MATH  Google Scholar 

  20. He L, Nilanjan R, Yisheng G, Zhang H (2018) Fast large-scale spectral clustering via explicit feature mapping. Trans Cybern. https://doi.org/10.1109/TCYB.2018.2794998

  21. Jia Y, Kwong S, Hou J (2018) Semi-supervised spectral clustering with structured sparsity regularization. Signal Process Lett 25(3):403–407. https://doi.org/10.1109/LSP.2018.2791606

    Article  Google Scholar 

  22. Langone R, Suykens JAK (2017) Fast kernel spectral clustering. Neurocomputing 268:27–33. https://doi.org/10.1016/j.neucom.2016.12.085

    Article  Google Scholar 

  23. Leng L, Li M, Kim C et al (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76(1):333–354. https://doi.org/10.1007/s11042-015-3058-7

    Article  Google Scholar 

  24. Leng L, Zhang J, Xu J et al (2010) Dynamic weighted discrimination power analysis in DCT domain for face and palmprint recognition. In: 2010 International conference on information and communication technology convergence (ICTC), pp 467–471. https://doi.org/10.1109/ICTC.2010.5674791

  25. Li Z, Wu X, Chang S (2012) Segmentation using superpixels: a bipartite graph partitioning approach. In: Proc CVPR. https://doi.org/10.1109/CVPR.2012.6247750, pp 789–796

  26. Li P et al (2013) Relational multimanifold coclustering. Trans Cybern 43(6):1871–1881. https://doi.org/10.1109/TSMCB.2012.2234108

    Article  Google Scholar 

  27. Liu Y et al (2013) Understanding and enhancement of internal clustering validation measures. Trans Cybern 43(3):982–994. https://doi.org/10.1109/TSMCB.2012.2220543

    Article  Google Scholar 

  28. Lutkepohl H (1997) Handbook of matrices. Comput Stat Data Anal 2.25:243

    Google Scholar 

  29. Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14:849–856

    Google Scholar 

  30. Pont-Tuset J et al (2017) Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation. Trans Pattern Anal Mach Intell 39(1). https://doi.org/10.1109/TPAMI.2016.2537320

  31. Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850. https://doi.org/10.2307/2284239

    Article  Google Scholar 

  32. Rong H et al (2018) A novel subgraph K+ -isomorphism method in social network based on graph similarity detection. Soft Comput 22(8):2583–2601. https://doi.org/10.1007/s00500-017-2513-y

    Article  Google Scholar 

  33. Semertzidis T, Rafailidis D, Strintzisa MG, Daras P (2015) Large-scale spectral clustering based on pairwise constraints. Inform Process Manag 51(5):616–624. https://doi.org/10.1016/j.ipm.2015.05.007

    Article  Google Scholar 

  34. Serge W, Kimbacher M, Wenger E, Neuhold A (1993) Morphometric analysis of the corpus callosum using MR: correlation of measurements with aging in healthy individuals. Am J Neuroradiol 14(3):637–645

    Google Scholar 

  35. Shen J et al (2016) Real-time superpixel segmentation by DBSCAN clustering algorithm. Trans Image Process 25(12):5933–5942. https://doi.org/10.1109/TIP.2016.2616302

    Article  MathSciNet  Google Scholar 

  36. Shi J, Malik J (2000) Normalized cuts and image segmentation. Trans Pattern Anal Mach Intell 22(8):888–905. https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  37. Spann M, Wilson R (1985) A quad-tree approach to image segmentation which combines statistical and spatial information. Pattern Recogn 18 (3-4):257–269. https://doi.org/10.1016/0031-3203(85)90051-2

    Article  Google Scholar 

  38. Tung F, Wong A, Clausi DA (2010) Enabling scalable spectral clustering for image segmentation. Pattern Recogn 43(12):4069–4076. https://doi.org/10.1016/j.patcog.2010.06.015

    Article  Google Scholar 

  39. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  40. Wang R, Nie F, Weizhong Y (2017) Fast spectral clustering with anchor graph for large hyperspectral images. Geosci Remote Sens Lett 14(11):2003–2007. https://doi.org/10.1109/LGRS.2017.2746625

    Article  Google Scholar 

  41. Yan D, Huang L, Jordan MI (2009) Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 907–916. https://doi.org/10.1145/1557019.1557118

  42. Yu Z et al (2015) Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data. ACM Trans Comput Biol Bioinform(TCBB) 12 (4):887–901. https://doi.org/10.1109/TCBB.2014.2359433

    Article  Google Scholar 

  43. Yuan Y, Chu J, Leng L et al (2020) A scale-adaptive object-tracking algorithm with occlusion detection. EURASIP J Image Video Process 2020:7. https://doi.org/10.1186/s13640-020-0496-6

    Article  Google Scholar 

  44. Zhan Q, Mao Y (2017) Improved spectral clustering based on Nyström method. Multimed Tools Appl 76(19):20149–20165. https://doi.org/10.1007/s11042-017-4566-4

    Article  Google Scholar 

  45. Zhang C, Chen H, Wu C, Chen M (2019) Multiscale Fast Spectral Clustering based on k-d Tree. In: 2019 IEEE 3rd information technology, networking, electronic and automation control conference (ITNEC), Chengdu, China, pp 1607–1611

  46. Zhang Y, Chu J, Leng L, Miao J (2020) Mask-Refined R-CNN: A Network for Refining Object Details in Instance Segmentation. Sensors 20(4):1010. https://doi.org/10.3390/s20041010

    Article  Google Scholar 

  47. Zhang H, Wu QMJ , Nguyen TM (2014) Image segmentation by a robust generalized fuzzy c-means algorithm. Int Conf Image Process 4024–4028. https://doi.org/10.1109/ICIP.2013.6738829

  48. Zhou Z, Wu QMJ et al (2017) Fast and accurate near-duplicate image elimination for visual sensor networks. Int J Distrib Sens Netw. 13(2), pp. https://doi.org/10.1177/1550147717694172

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minxin Chen or Chenjian Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by the National Natural Science Foundation of China under Grant 61801321.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhu, G., Lian, B. et al. Image segmentation based on multiscale fast spectral clustering. Multimed Tools Appl 80, 24969–24994 (2021). https://doi.org/10.1007/s11042-021-10831-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10831-1

Keywords

Navigation