Skip to main content
Log in

3D mesh segmentation via L0-constrained random walks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D mesh segmentation is a challenging problem in computer graphics, computer vision, and multimedia. In this paper, we cast mesh segmentation as a L0 minimization problem using random walks and L0 norm. In random walks method, the probabilities of random walks change smoothly over the whole model, which may lead to inaccurate segmentation boundaries. To attain a perception-aware result, the changes of probabilities should comply with mesh geometry. That is, the changes of probabilities near region boundaries should be more drastic than those inside the regions. Therefore, we introduce a L0 constraint to reflect the sparsity of probability changes, and identify region boundaries more precisely. Experimental results show that the proposed algorithm is effective, robust, and outperforms the state-of-the-art methods on various 3D meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Attene M, Falcidieno B, Spagnuolo M (2012) Hierarchical mesh segmentation based on fitting primitives. Vis Comput 22(3):181–193

    Article  Google Scholar 

  2. Au OKC, Zheng YY, Chen ML, Xu PF, Tai CL (2012) Mesh segmentation with concavity-aware fields. IEEE Trans Vis Comput Graph 18(7):1125–1134

    Article  Google Scholar 

  3. Benhabiles H, Lavoué G, Vandeborre JP, Daoudi M (2011) Learning boundary edges for 3D-mesh segmentation. Comput Graph Forum 30(8):2170–2182

    Article  Google Scholar 

  4. Benjamin W, Polk AW, Vishwanathan SVN, Ramani K (2011) Heat walk: robust salient segmentation of non-rigid shapes. Comput Graph Forum 30(7):2097–2106

    Article  Google Scholar 

  5. Brown S, Morse BS, Barrett WA (2009) Interactive part selection for mesh and point models using hierarchical graph-cut partitioning. In: Proceedings of Graphics Interface, Kelowna, Canada, pp 23–30

  6. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen X, He FZ, Yu HP (2019) A matting method based on full feature coverage. Multimed Tools Appl 78(9):11173–11201

    Article  Google Scholar 

  8. Chen HK, Li MW (2018) A novel mesh saliency approximation for polygonal mesh segmentation. Multimed Tools Appl 77(13):17223–17246

    Article  Google Scholar 

  9. Chen MJ, Zou QF, Wang CB, Liu LG (2019) EdgeNet: deep metric learning for 3D shapes. Comput Aided Geom Des 72:19–33

    Article  MathSciNet  MATH  Google Scholar 

  10. De Goes F, Butts A, Desbrun M (2020) Discrete differential operators on polygonal meshes. ACM Trans Graph 39(4):article 110

    Google Scholar 

  11. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan LB, Liu LG, Liu K (2011) Paint mesh cutting. Comput Graph Forum 30(2):603–611

    Article  Google Scholar 

  13. George D, Xie XH, Tam GKL (2018) 3D mesh segmentation via multi-branch 1D convolutional neural networks. Graph Model 96:1–10

    Article  MathSciNet  Google Scholar 

  14. Golovinskiy A, Funkhouser TA (2008) Randomized cuts for 3D mesh analysis. ACM Trans Graph 27(5):article 145

    Article  Google Scholar 

  15. Guo K, Chen XW, Zhou B, Zhao QP (2018) Image-guided 3D model labeling via multiview alignment. Graph Model 96:30–37

    Article  MathSciNet  Google Scholar 

  16. Guo K, Zou DQ, Chen XW (2015) 3D mesh labeling via deep convolutional neural networks. ACM Trans Graph 35(1):article 3

    Article  Google Scholar 

  17. He L, Schaefer S (2013) Mesh denoising via L0 minimization. ACM Trans Graph 32(4):article 64

    Article  Google Scholar 

  18. Ji ZP, Liu LG, Chen ZG, Wang GJ (2006) Easy mesh cutting. Comput Graph Forum 25(3):283–291

    Article  Google Scholar 

  19. Jiang HY, Yan FL, Cai JF, Zheng JM, Xiao J (2020) End-to-end 3D point cloud instance segmentation without detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Seattle, USA, pp 12793–12802

  20. Jiao X, Wu TR, Qin XZ (2017) Mesh segmentation by combining mesh saliency with spectral clustering. J Comput Appl Math 329:134–146

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalogerakis E, Averkiou M, Maji S, Chaudhuri S (2017) 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, USA, pp 6630–6639

  22. Kalogerakis E, Hertzmann A, Singh K (2010) Learning 3D mesh segmentation and labeling. ACM Trans Graph 29(4):article 102

    Article  Google Scholar 

  23. Kalra A, Taamazyan V, Rao SK, Venkataraman K, Raskar R, Kadambi A (2020) Deep polarization cues for transparent object segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Seattle, USA, pp 8599–8608

  24. Katz S, Tal A (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans Graph 22(3):954–961

    Article  Google Scholar 

  25. Lai YK, Hu SM, Martin RR, Rosin PL (2008) Fast mesh segmentation using random walks. In: Proceedings of the ACM symposium on solid and physical modeling, Stony Brook, USA, pp 183–191

  26. Lai YK, Hu SM, Martin RR, Rosin PL (2009) Rapid and effective segmentation of 3D models using random walks. Comput Aided Geom Des 26(6):665–679

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee YJ, Lee SY, Shamir A, Cohen-Or D, Seidel HP (2005) Mesh scissoring with minima rule and part salience. Comput Aided Geom Des 22(5):444–465

    Article  MathSciNet  MATH  Google Scholar 

  28. Liang YQ, He FZ, Zeng XT (2020) 3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolution. Integr Comput Aided Eng 27(4):417–435

    Article  Google Scholar 

  29. Liu XP, Zhang J, Liu RS, Li B, Wang J, Cao JJ (2015) Low-rank 3D mesh segmentation and labeling with structure guiding. Comput Graph 46:99–109

    Article  Google Scholar 

  30. Lv JJ, Chen XL, Huang J, Bao HJ (2012) Semi-supervised mesh segmentation and labeling. Comput Graph Forum 31(7–2):2241–2248

    Article  Google Scholar 

  31. Meng M, Fan LB, Liu LG (2011) iCutter: a direct cut-out tool for 3D shapes. Comput Anim Virtual Worlds 22(4):335–342

    Article  Google Scholar 

  32. Rodrigues RSV, Morgado JFM, Gomes AJP (2018) Part-based mesh segmentation: a survey. Comput Graph Forum 37(6):235–274

    Article  Google Scholar 

  33. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graph Forum 27(6):1539–1556

    Article  MATH  Google Scholar 

  34. Shu ZY, Qi CW, Xin SQ, Hu C, Wang L, Zhang Y, Liu LG (2016) Unsupervised 3D shape segmentation and co-segmentation via deep learning. Comput Aided Geom Des 43:39–52

    Article  MathSciNet  MATH  Google Scholar 

  35. Shu ZY, Shen XY, Xin SQ, Chang QJ, Feng JQ, Kavan L, Liu LG (2020) Scribble-based 3D shape segmentation via weakly-supervised learning. IEEE Trans Vis Comput Graph 26(8):2671–2682

    Article  Google Scholar 

  36. Sofiiuk K, Petrov IA, Barinova O, Konushin A (2020) F-BRS: rethinking backpropagating refinement for interactive segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Seattle, USA, pp 8620–8629

  37. Sun J, Ovsjanikov M, Guibas LJ (2009) A concise and provably informative multi-scale signature based on heat diffusion. Comput Graph Forum 28(5):1383–1392

    Article  Google Scholar 

  38. Taime A, Saaidi A, Satori K (2018) A new semantic segmentation approach of 3D mesh using the stereoscopic image colors. Multimed Tools Appl 77(20):27143–27162

    Article  Google Scholar 

  39. Wang YH, Gong ML, Wang TH, Cohen-Or D, Zhang H, Chen BQ (2013) Projective analysis for 3D shape segmentation. ACM Trans Graph 32(6):article 192

    Article  MathSciNet  Google Scholar 

  40. Xie ZG, Xu K, Shan W, Liu LG, Xiong YS, Huang H (2015) Projective feature learning for 3D shapes with multi-view depth images. Comput Graph Forum 34(7):1–11

    Article  Google Scholar 

  41. Xu HT, Dong M, Zhong ZC (2017) Directionally convolutional networks for 3D shape segmentation. In: Proceedings of the IEEE international conference on computer vision, Venice, Italy, pp 2717–2726

  42. Xu X, Lee GH (2020) Weakly supervised semantic point cloud segmentation: towards 10× fewer labels. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Seattle, USA, pp 13703–13712

  43. Xu L, Lu CW, Xu Y, Jia JY (2011) Image smoothing via L0 gradient minimization. ACM Trans Graph 30(6):article 174

    Article  Google Scholar 

  44. Xu WW, Shi ZX, Xu ML, Zhou K, Wang JD, Zhou B, Wang JR, Yuan ZM (2014) Transductive 3D shape segmentation using sparse reconstruction. Comput Graph Forum 33(5):107–115

    Article  Google Scholar 

  45. Yamauchiy H, Lee SY, Lee YJ, Ohtake Y, Belyaevy A, Seidel HP (2005) Feature sensitive mesh segmentation with mean shift. In: Proceedings of the international conference on shape modeling, Cambridge, USA, pp 236–243

  46. Yan DM, Wang WP, Liu Y, Yang ZW (2012) Variational mesh segmentation via quadric surface fitting. Comput Aided Des 44(11):1072–1082

    Article  Google Scholar 

  47. Yi L, Su H, Guo XW, Guibas LJ (2017) SyncSpecCNN: synchronized spectral CNN for 3D shape segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, USA, pp 6584–6592

  48. Yu HP, He FZ, Pan YT (2019) A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation. Multimed Tools Appl 78(9):11779–11798

    Article  Google Scholar 

  49. Yu HP, He FZ, Pan YT (2020) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed Tools Appl 79(9–10):5743–5765

    Article  Google Scholar 

  50. Zhang JY, Wu CL, Cai JF, Zheng JM, Tai XC (2010) Mesh snapping: robust interactive mesh cutting using fast geodesic curvature flow. Comput Graph Forum 29(2):517–526

    Article  Google Scholar 

  51. Zhang JY, Zheng JM, Cai JF (2011) Interactive mesh cutting using constrained random walks. IEEE Trans Vis Comput Graph 17(3):357–367

    Article  Google Scholar 

  52. Zhang JY, Zheng JM, Wu CL, Cai JF (2012) Variational mesh decomposition. ACM Trans Graph 31(3):article 21

    Article  Google Scholar 

  53. Zheng YY, Tai CL (2010) Mesh decomposition with cross-boundary brushes. Comput Graph Forum 29(2):527–535

    Article  Google Scholar 

  54. Zheng YY, Tai CL, Au OKC (2012) Dot scissor: a single-click interface for mesh segmentation. IEEE Trans Vis Comput Graph 18(8):1304–1312

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by Natural Science Foundation of Shandong Province, China (ZR2018MF006), and National Natural Science Foundation of China (11701538).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Zhao, Y. & Shan, X. 3D mesh segmentation via L0-constrained random walks. Multimed Tools Appl 80, 24885–24899 (2021). https://doi.org/10.1007/s11042-021-10816-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10816-0

Keywords

Navigation