Skip to main content
Log in

Capture device identification from digital images using Kullback-Leibler divergence

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

It is proposed a forensic method for the capture device identification from digital images, which requires two elements: i) a digital image subject to controversy named disputed image and ii) a set of eligible capture devices with which the disputed image could have been shot. In order to define a device statistical fingerprint, a set of reference digital images is produced for each eligible capture device. The device statistical fingerprint is estimated averaging the statistical distribution of the photo response non-uniformity (PRNU) signal extracted from each set of reference digital images. Then, a comparison based on Kullback-Leibler divergence (KLD) is performed between the statistical fingerprint for each capture device and the statistical distribution of the PRNU signal extracted from the disputed image. Considering that KLD is a non-symmetric measure, the capture device, for which the smallest KLD has been estimated, will be chosen such as the one that shot the disputed image. The effectiveness of the proposed method was estimated by using a case study, which includes eight eligible capture devices, each of which shot thirty reference images and twenty disputed images. Then, the performance of the proposed method was like the performance of the methods that use peak-to-correlation energy as the discrimination criterion when they were applied to the case study. Finally, the proposed method offers two advantages; it reduces the processing time when the PRNU signal is extracted from digital image and it avoids the aberration produced by the lens into the PRNU signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Zarouni M (2006) Mobile handset forensic evidence: a challenge for law enforcement. In: Australian Digital Forensics Conference Proceedings. School of Computer and Information Science, Edith Cowan University, Perth, Western Australia

  2. Bayram S, Sencar HT, Memon N (2008) Classification of digital camera-models based on demosaicing artifacts. Digit Investig 5(1):49–59

    Article  Google Scholar 

  3. Behare MS, Bhalchandra AS, Kumar R (2019) Source camera identification using photo response noise uniformity. In: 2019 3rd international conference on electronics, communication and aerospace technology (ICECA). IEEE

  4. Ben Hamza A, Krim H (2003) Jensen-renyi divergence measure: theoretical and computational perspectives. In: IEEE international symposium on information theory, 2003. Proceedings. IEEE

  5. Bingchao X u, Wang X, Zhou X, Xi J, Wang S (2016) Source camera identification from image texture features. Neurocomputing 207:131–140

    Article  Google Scholar 

  6. Bondi L, Bestagini P, Pérez-González F, Preprocessing ST (2019) Improving PRNU compression through quantization, and coding. IEEE Trans Inform Foren Secur 14(3):608,620

    Google Scholar 

  7. Chang-Tsun L (2010) Source camera identification using enhanced sensor pattern noise. IEEE Trans Inform Foren Secur 5(2):280–287

    Article  Google Scholar 

  8. Chen M, Fridrich J, Goljan M (2007) Digital imaging sensor identification (further study). In: Electronic imaging 2007. International Society for Optics and Photonics, pp 65050P–65050P

  9. Chen C, Zhao X, Stamm MC (2017) Detecting anti-forensic attacks on demosaicing-based camera model identification. In: 2017 IEEE International conference on image processing (ICIP), pp 1512–1516

  10. Choi KS, Lam EY, Wong KKY (2006) Automatic source camera identification using the intrinsic lens radial distortion. Opt Express 14(24):11551

    Article  Google Scholar 

  11. Choi KS, Lam EY, Wong KKY (2006) Source camera identification using footprints from lens aberration. In: Sampat N, DiCarlo JM, Martin RA (eds) Digital Photography II. SPIE

  12. Cooper AJ (2013) Improved photo response non-uniformity (PRNU) based source camera identification. Foren Sci int 226(1):132–141

    Article  Google Scholar 

  13. Danelljan M, Van Gool L, Timofte R (2020) Probabilistic regression for visual tracking. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE

  14. David AB, Liub H, Jackson AD (2015) The kullback-Leibler divergence as an estimator of the statistical properties of CMB maps. J Cosmol Astropart Phys 2015(06):051

    Article  Google Scholar 

  15. de la República S (2019) Legislatura XLIV. Punto de acuerdo para modificar códigos penales o crear leyes para incorporar el delito de violencia virtual, agravado en los casos de agresión por motivos de género. In: de la República S (ed) Gaceta LXIV/1SPR-21. Gobierno de México

  16. Fernández-Menduiña S, Pérez-González F (2020) On the information leakage of camera fingerprint estimates. In: arxiv.org: Electrical engineering and systems science, Image and video processing (eess.IV)

  17. Filler T, Fridrich J, Goljan M (2008) Using sensor pattern noise for camera model identification. In: Proc. IEEE Int. Conf. Image Process. IEEE, pp 1296–1299

  18. Fischer A, Gloe T (2013) Forensic analysis of interdependencies between vignetting and radial lens distortion. In: Alattar AM, Memon ND, Heitzenrater CD (eds) Media Watermarking, Security, and Forensics 2013. SPIE

  19. Fridrich J (2013) Sensor defects in digital image forensic. In: Digital image forensics, vol 1. Springer, pp 179–218

  20. Gilbert H, Handschuh H (2003) Security analysis of sha-256 and sisters. In: International workshop on selected areas in cryptography. Springer, pp 175–193

  21. Gisolf F, Barens P, Snel E, Malgoezar A, Vos M, Mieremet A, Geradts Z (2014) Common source identification of images in large databases. Foren Sci Int 244:222–230

    Article  Google Scholar 

  22. Gloe T, Böhme R (2010) The dresden image database for benchmarking digital image forensics. J Digit Foren Pract 3:150–159,01

    Article  Google Scholar 

  23. Goljan M (2008) Digital camera identification from images–estimating false acceptance probability. In: International Workshop on Digital Watermarking. Springer, pp 454–468

  24. Goljan M, Fridrich J, Filler T (2009) Large scale test of sensor fingerprint camera identification. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, pp 72540I–72540I

  25. Goljan M, Fridrich J, Mo C (2011) Defending against fingerprint-copy attack in sensor-based camera identification. IEEE Trans Inform Foren Secur 6 (1):227–236

    Article  Google Scholar 

  26. Goljan M, Mo C, Fridrich J (2007) Identifying common source digital camera from image pairs. In: 2007 IEEE International conference on image processing. IEEE

  27. Hai Thai T, Cogranne R, Retraint F (2014) Camera model identification based on the heteroscedastic noise model. IEEE Trans Image Process 23 (1):250–263

    Article  MathSciNet  Google Scholar 

  28. Harremoes P, Tim van E (2014) Renyi divergence and kullback-leibler divergence. IEEE Trans Inf Theory 60(7):3797–3820

    Article  Google Scholar 

  29. He Y, Ben Hamza A, Krim H (2003) A generalized divergence measure for robust image registration. IEEE Trans Signal Process 51(5):1211–1220

    Article  MathSciNet  Google Scholar 

  30. Ji S, Zhang Z, Ying S, Wang L, Zhao X, Gao Y (2020) Kullback-Leibler divergence metric learning. IEEE Trans Cybern 1–12

  31. Kadhim IJ, Premaratne P, Vial PJ, Halloran B (2019) Comprehensive survey of image steganography: Techniques, evaluations, and trends in future research, vol 335, pp 299–326

  32. Kent K, Chevalier S, Grance T, Dang H (2006) SP 800-86 Guide to integrating forensic techniques into incident response

  33. Khader M, Ben Hamza A (2011) An entropy-based technique for nonrigid medical image alignment. In: Lecture notes in computer science. Springer, Berlin, pp 444–455

  34. Khader M, Hamza AB (2011) Nonrigid image registration using an entropic similarity. IEEE Trans Inform Technol Biomed 15(5):681–690

    Article  Google Scholar 

  35. Kharrazi M, Sencar HT, Memon N (2004) Blind source camera identification. In: International conference on image processing, 2004. ICIP ’04., volume 1, vol 1, pp 709–712

  36. Kullback S, Leibler RA (1951) On information and sufficiency. Annals Math Stat 22(1):79–86

    Article  MathSciNet  Google Scholar 

  37. Li C-T, Li Y (2012) Color-decoupled photo response non-uniformity for digital image forensics. IEEE Trans Circ Syst Video Technol 22(2):260–271

    Article  MathSciNet  Google Scholar 

  38. Li R, Li C-T, Guan Y (2018) Inference of a compact representation of sensor fingerprint for source camera identification. Pattern Recogn 74:556–567

    Article  Google Scholar 

  39. Li B, Shu H, Liu Z, Shao Z, Li C, Huang M, Huang J (2019) Nonrigid medical image registration using an information theoretic measure based on Arimoto entropy with gradient distributions. Entropy 21(2):189

    Article  MathSciNet  Google Scholar 

  40. Long M, Peng F, Zhu Y (2019) Identifying natural images and computer generated graphics based on binary similarity measures of PRNU. Multimed Tools Appl 78(1):489,506

    Article  Google Scholar 

  41. Lukas J, Fridrich J, Goljan M (2006) Digital camera identification from sensor pattern noise. IEEE Trans Inform Foren Secur 1(2):205–214

    Article  Google Scholar 

  42. Matthews R, Sorell M, Falkner N (2019) Isolating lens effects from source camera identification using sensor pattern noise, vol 51, pp S132–S135

  43. Matthews R, Sorell M, Falkner N (2019) An analysis of optical contributions to a photo-sensor’s ballistic fingerprints. Digit Investig 28:139–145

    Article  Google Scholar 

  44. Mehrish A, Subramanyam AV, Emmanuel S (2018) Robust PRNU estimation from probabilistic raw measurements. Signal Process Image Commun 66:30–41

    Article  Google Scholar 

  45. Meij C, Geradts Z (2018) Source camera identification using Photo Response non-Uniformity on WhatsApp. Digit Investig 24:142–154

    Article  Google Scholar 

  46. Mo C, Fridrich J, Goljan M, Lukás J (2008) Determining image origin and integrity using sensor noise. IEEE Trans Inform Foren Secur 3(1):74–90

    Article  Google Scholar 

  47. NYCE (2013) Tecnologías de la Información Metodología de Análisis Forense de Datos y Guías de Ejecución

  48. Ng T-T, Chang S-F, Lin C-Y, Sun Q (2006) Passive-blind image forensics. Multimed Secur Technol Digit Rights 15:383–412

    Article  Google Scholar 

  49. Qiao T, Retraint F, Cogranne R, Thai TH (2017) Individual camera device identification from jpeg images. Signal Process Image Commun 52:74–86

    Article  Google Scholar 

  50. Qin J, Luo Y, Xiang X, Tan Y, Huang H (2019) Coverless image steganography: A survey, vol 7, pp 171372–171394

  51. Roy A, Chakraborty RS, Sameer U, Naskar R (2017) Camera source identification using discrete cosine transform residue features and ensemble classifier. In: 2017 IEEE Conference on computer vision and pattern recognition workshops (CVPRW), pp 1848–1854

  52. Saber AH, Khan MA, Mejbel BG (2020) A survey on image forgery detection using different forensic approaches. Adv Sci Technol Eng Syst J 5(3):361–370

    Article  Google Scholar 

  53. Saito S, Tomioka Y, Kitazawa H (2017) A theoretical framework for estimating false acceptance rate of PRNU-based camera identification. IEEE Trans Inform Foren Secur 12(9):2026–2035

    Article  Google Scholar 

  54. Saitoh N, Kurosawa K, Kuroki K (1999) Ccd fingerprint method-identification of a video camera from videotaped images, vol 3, pp 537–540

  55. Sencar HT, Memon N (2008) Overview of state-of-the-art in digital image forensics. Algo Architect Inform Syst Secur 3:325–348

    Google Scholar 

  56. Seshadri S, Karunakar KR, Akshatha AK, Paul KH (2020) A preliminary approach to using PRNU based transfer learning for camera identification. Adv Intell Syst Comput 944:246,255

    Google Scholar 

  57. Silva J, Narayanan S (2006) Upper bound Kullback-Leibler Divergence for hidden Markov models with application as discrimination measure for speech recognition. In: 2006 IEEE international symposium on information theory. IEEE

  58. Sung-Hyuk C (2007) Comprehensive survey on distance/similarity measures between probability density functions. Int J Math Models Methods Appl Sci 1 (4):300–307

    Google Scholar 

  59. Swaminathan A, Min W, Ray Liu KJ (2008) Digital image forensics via intrinsic fingerprints. IEEE Trans Inform Foren Secur 3(1):101–117

    Article  Google Scholar 

  60. Thai TH, Cogranne R, Retraint F (2012) Camera model identification Based on hypothesis testing theory. In: 2012 Proceedings of the 20th european signal processing conference (EUSIPCO), pp 1747–1751

  61. Thakur R, Rohilla R (2020) Recent advances in digital image manipulation detection techniques: A brief review. Foren Sci Int 312:110311

    Article  Google Scholar 

  62. Titouna C, Nait-Abdesselam F, Moungla H (2020) An online anomaly detection approach for unmanned aerial vehicles. In: 2020 International wireless communications and mobile computing (IWCMC). IEEE

  63. van LT, Chong K-S, Emmanuel S, Kankanhalli MS (2007) A survey on digital camera image forensic methods. In: 2007 IEEE International conference on multimedia and expo. IEEE, pp 16–19

  64. van LT, Emmanuel S, Kankanhalli MS (2007) Identifying source cell phone using chromatic aberration. In: Multimedia and Expo 2007 IEEE International conference on. IEEE

  65. van Erven T, Harremoes P (2014) Rényi divergence and Kullback-Leibler divergence. IEEE Trans Inform Theory 60(7):3797–3820

    Article  MathSciNet  Google Scholar 

  66. Vázquez-Medina R (2008) Mapeos caóticos unidimensionales aplicados a la generación de ruido, PhD thesis, UAM Iztapalapa

  67. Vidyasagar M (2010) Kullback-Leibler divergence rate between probability distributions on sets of different cardinalities. In: 49th IEEE Conference on Decision and Control (CDC). IEEE

  68. Wang J, Guojing W, Li J, Jha SK (2019) A new method estimating linear gaussian filter kernel by image PRNU noise. J Inform Secur Appl 44:1,11

    Google Scholar 

  69. Yang S, Shaozuo Y, Zhao B, Zhao B (2020) Reducing the feature divergence of RGB and near-infrared images using switchable normalization. In: IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE, p 2020

  70. Zeng H, Wan Y, Deng K, Peng A (2020) Source camera identification with Dual-Tree complex wavelet transform. IEEE Access 8:18874–18883

    Article  Google Scholar 

  71. Zhang W-N, Liu Y-X, Zou Z-Y, Zang Y-L, Yang Y, Law BN-F (2019) Effective source camera identification based on MSEPLL denoising applied to small image patches. In: Asia-pacific signal and information processing association annual summit and conference (APSIPA ASC). IEEE, p 2019

  72. Zhang W, Tang X, Yang Z, Niu S (2019) Multi-scale segmentation strategies in PRNU-based image tampering localization. Multimed Tools Appl 78 (14):20113–20132

    Article  Google Scholar 

  73. Zhao Y, Zheng N, Qiao T, Ming X u (2019) Source camera identification via low dimensional PRNU features. Multimed Tools Appl

Download references

Acknowledgements

Authors thank Leonardo Palacios-Luengas (UAM-Iztapalapa) for the recommendations provided in conducting the experiments.

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT-México) [Grant numbers: CVU-746317 (A. L. Quintanar-Reséndiz) and CVU-377075 (F. Rodríguez-Santos)] and the Instituto Politécnico Nacional (IPN-México) [Grant number: SIP-20210023 (R. Vázquez–Medina) and SIP-20210208 (O. Jiménez-Ramírez)].

Author information

Authors and Affiliations

Authors

Contributions

R.V.M. and G.D.G. devised the project and the main conceptual ideas, and they developed the required theory. A.L.Q.R and R.V.M designed the case study. A.L.Q.R, J.L.P.M, O.J.R and F.R.S. performed the computations. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Rubén Vázquez-Medina.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintanar-Reséndiz, A.L., Rodríguez-Santos, F., Pichardo-Méndez, J.L. et al. Capture device identification from digital images using Kullback-Leibler divergence. Multimed Tools Appl 80, 19513–19538 (2021). https://doi.org/10.1007/s11042-021-10653-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10653-1

Keywords

Navigation