Brain tumor classification using deep convolutional autoencoder-based neural network: multi-task approach

Abstract

Diagnosis, detection and classification of tumors, in the brain MRI images, are important because misdiagnosis can lead to death. This paper proposes a method that can diagnose brain tumors in the MRI images and classify them into 5 categories using a Convolutional Neural Network (CNN). The proposed network uses a Convolutional Auto-Encoder Neural Network (CANN) to extract and learn deep features of input images. Extracted deep features from each level are combined to make desirable features and improve results. To classify brain tumor into three categories (Meningioma, Glioma, and Pituitary) the proposed method was applied on Cheng dataset and has reached a considerable performance accuracy of 99.3%. To diagnosis and grading Glioma tumors, the proposed method was applied on IXI and BraTS 2017 datasets, and to classify brain images into six classes including Meningioma, Pituitary, Astrocytoma, High-Grade Glioma, Low-Grade Glioma and Normal images (No tumor), the all datasets including IXI, BraTS2017, Cheng and Hazrat-e-Rassol, was used by the proposed network, and it has reached desirable performance accuracy of 99.1% and 98.5%, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Afshar P, Plataniotis K, Mohammadi A (2019) Capsule networks for brain tumor classification based on mri images and coarse tumor boundaries. In: ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1368–1372

  2. 2.

    Anaraki A, Ayati M, Kazemi F (2019) Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern Biomed Eng 39(1):63–74

    Article  Google Scholar 

  3. 3.

    Argyriou A, Evgeniou T, Pontil M (2007) Multi-task feature learning. In: Advances in neural information processing systems. pp 41–48

  4. 4.

    Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  5. 5.

    Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv:1811.02629

  6. 6.

    Banerjee S, Mitra S, Shankar BU (2018) Automated 3d segmentation of brain tumor using visual saliency. Inform Sci 424:337–353

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chaplot S, Patnaik L, Jagannathan N (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92

    Article  Google Scholar 

  8. 8.

    Chen M, Shi X, Zhang Y, Wu D, Guizani M (2017) Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans Big Data

  9. 9.

    Cheng J (2017) Brain tumor dataset. Web Site. http://figshare.com

  10. 10.

    Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, Wang Z, Feng Q (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PloS One 10(10):e0140381

    Article  Google Scholar 

  11. 11.

    Cheng J, Yang W, Huang M, Huang W, Jiang J, Zhou Y, Yang R, Zhao J, Feng Y, Feng Q et al (2016) Retrieval of brain tumors by adaptive spatial pooling and fisher vector representation. PloS one 11(6):e0157112

    Article  Google Scholar 

  12. 12.

    Cho HH, Park H (2017) Classification of low-grade and high-grade glioma using multi-modal image radiomics features. In: 2017 39th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 3081–3084

  13. 13.

    Criminisi A (2016) Machine learning for medical images analysis. Med Image Anal 33:91–93

    Article  Google Scholar 

  14. 14.

    Deepak S, Ameer P (2019) Brain tumor classification using deep cnn features via transfer learning. Comput Biol Med 103345:111

    Google Scholar 

  15. 15.

    El-Dahshan E, Hosny T, Salem A (2010) Hybrid intelligent techniques for mri brain images classification. Digit Signal Process 20(2):433–441

    Article  Google Scholar 

  16. 16.

    Ertosun M, Rubin D (2015) Automated grading of gliomas using deep learning in digital pathology images: a modular approach with ensemble of convolutional neural networks. In: AMIA annual symposium proceedings, vol 2015. American Medical Informatics Association, p 1899

  17. 17.

    Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115

    Article  Google Scholar 

  18. 18.

    Gonbadi FB, Khotanlou H (2019) Glioma brain tumors diagnosis and classification in mr images based on convolutional neural networks. In: 2019 9th International conference on computer and knowledge engineering (ICCKE). IEEE, pp 1–5

  19. 19.

    Grant R (2019) Medical management of adult glioma. In: Management of adult glioma in nursing practice. Springer, pp 61–80

  20. 20.

    Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S et al (2017) Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 7310–7311

  21. 21.

    Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift arxiv e-prints

  22. 22.

    IXI: brain-development website (2019) https://brain-development.org/ixi-dataset. Accessed: 2019-05-30

  23. 23.

    Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ, Kaufmann TJ (2017) 2016 updates to the who brain tumor classification system: what the radiologist needs to know. Radiographics 37(7):2164–2180

    Article  Google Scholar 

  24. 24.

    Khawaldeh S, Pervaiz U, Rafiq A, Alkhawaldeh R (2018) Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Appl Sci 8(1):27

    Article  Google Scholar 

  25. 25.

    Koitka S, Friedrich C (2016) Traditional feature engineering and deep learning approaches at medical classification task of imageclef 2016. In: CLEF (Working Notes). pp 304–317

  26. 26.

    Kumar A, Kim J, Lyndon D, Fulham M, Feng D (2016) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform 21(1):31–40

    Article  Google Scholar 

  27. 27.

    Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, Van Der Laak J, Van Ginneken B, Sánchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  28. 28.

    Liu L, Zheng G, Bastian JD, Keel MJB, Nolte LP, Siebenrock KA, Ecker TM (2016) Periacetabular osteotomy through the pararectus approach: technical feasibility and control of fragment mobility by a validated surgical navigation system in a cadaver experiment. Int Orthop 40(7):1389–1396

    Article  Google Scholar 

  29. 29.

    Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2016) Towards better analysis of deep convolutional neural networks. IEEE Trans Vis Comput Graph 23 (1):91–100

    Article  Google Scholar 

  30. 30.

    Lloyd CT, Sorichetta A, Tatem AJ (2017) High resolution global gridded data for use in population studies. Sci Data 4(1):1–17

    Article  Google Scholar 

  31. 31.

    Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathologica 131(6):803–820

    Article  Google Scholar 

  32. 32.

    Mohsen H, El-Dahshan ESA, El-Horbaty ESM, Salem ABM (2018) Classification using deep learning neural networks for brain tumors. Appl Comput Inform J 3(1):68–71

    Google Scholar 

  33. 33.

    Paul J, Plassard A, Landman B, Fabbri D (2017) Deep learning for brain tumor classification. In: SPIE, medical imaging, biomedical applications in molecular, structral, functional imaging, vol 10137, pp 10137–10142

  34. 34.

    Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117

    Article  Google Scholar 

  35. 35.

    Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  Google Scholar 

  36. 36.

    Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, Zang Y, Tian J (2017) Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn 61:663–673

    Article  Google Scholar 

  37. 37.

    Shiraishi J, Li Q, Appelbaum D, Doi K (2011) Computer-aided diagnosis and artificial intelligence in clinical imaging. In: Seminars in nuclear medicine, vol 41. Elsevier, pp 449–462

  38. 38.

    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  Google Scholar 

  39. 39.

    Sridhar K, Baskar S, Shakeel PM, Dhulipala VS (2019) Developing brain abnormality recognize system using multi-objective pattern producing neural network. J Ambient Intell Humaniz Comput 10(8):3287–3295

    Article  Google Scholar 

  40. 40.

    Sultan H, Salem N, Al-Atabany W (2019) Multi-classification of brain tumor images using deep neural network. IEEE Access

  41. 41.

    Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  Google Scholar 

  42. 42.

    Wong KC, Syeda-Mahmood T, Moradi M (2018) Building medical image classifiers with very limited data using segmentation networks. Med Image Anal 49:105–116

    Article  Google Scholar 

  43. 43.

    Xie S, Sun C, Huang J, Tu Z, Murphy K (2018) Rethinking spatiotemporal feature learning: Speed-accuracy trade-offs in video classification. In: Proceedings of the European conference on computer vision (ECCV). pp. 305–321

  44. 44.

    Xu Y, Mo T, Feng Q, Zhong P, Lai M, Eric I, Chang C (2014) Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1626–1630

  45. 45.

    Yu Y, Lin H, Meng J, Wei X, Guo H, Zhao Z (2017) Deep transfer learning for modality classification of medical images. Information 8(3):91

    Article  Google Scholar 

  46. 46.

    Zacharaki E, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem E, Davatzikos C (2009) Classification of brain tumor type and grade using mri texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Vahid Vahidpour for his valuable help and comments in this research project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hassan Khotanlou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bashir-Gonbadi, F., Khotanlou, H. Brain tumor classification using deep convolutional autoencoder-based neural network: multi-task approach. Multimed Tools Appl (2021). https://doi.org/10.1007/s11042-021-10637-1

Download citation

Keywords

  • Auto-encoder
  • Brain tumor
  • Deep learning
  • Convolutional neural network