Skip to main content
Log in

A reversible data hiding scheme based on (5, 3) Hamming code using extra information on overlapped pixel blocks of grayscale images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a reversible data hiding scheme using (5, 3) Hamming code. A cover image is partitioned into blocks of five pixels. An adjusted (5, 3) Hamming code method is then applied to find a possible modification position in these blocks to conceal message bits. The estimated position is used to determine the started pixel in the next block and this pixel may belong to the current block of pixels. This means that the overlapped pixel blocks are employed in the proposed scheme to hide secret data. As a result, the proposed scheme provides an average embedding payload reaches to 1.2 bits per pixel (bpp). The embedding positions are also utilized as a secret key to protect the hidden message from extracting attacks and extra information in the image recovering process. An original image can be recovered with no error after an extraction process has been completed. The experiment results obtained from 10,000 natural images in BOWS-2 prove that the proposed scheme can achieve a higher embedding rate, better stego-image perceptual quality, and higher security against detection and extraction attacks compared with the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbasi R, Xu L, Amin F, Luo B (2019) Efficient lossless compression based reversible data hiding using multilayered n-bit localization. Secur Commun Netw 2019:1–13. https://doi.org/10.1155/2019/8981240

    Article  Google Scholar 

  2. Abdulla A (2015) Exploiting similarities between secret and cover images for improved embedding efficiency and security in digital steganography. The University of Buckingham, Buckingham

    Google Scholar 

  3. Abdulla AA, Sellahewa H, Jassim SA (2014) Steganography based on pixel intensity value decomposition. Baltimore, Maryland, p. 912005, https://doi.org/10.1117/12.2050518.

  4. Celik MU, Sharma G, Tekalp A, Saber E (2005) Lossless generalized-LSB data embedding. Image Process IEEE Trans 12:253–266

    Article  Google Scholar 

  5. Chang C-C, Tang R, Lin C-C, Lyu W-L (2018) High-capacity reversible data hiding method for JPEG images. J Softw 12(12):1–17. https://doi.org/10.17706/jsw.13.1.1-17

    Article  Google Scholar 

  6. Chen K, Chang C-C (2019) Real-time error-free reversible data hiding in encrypted images using (7, 4) Hamming code and most significant bit prediction. Symmetry 11(1):51. https://doi.org/10.3390/sym11010051

    Article  MATH  Google Scholar 

  7. Fang Y, Zeng K, Wang Z, Lin W, Fang Z, Lin C-W (2014) Objective quality assessment for image retargeting based on structural similarity. IEEE J Emerg Sel Top Circuits Syst 4(1):95–105. https://doi.org/10.1109/JETCAS.2014.2298919

    Article  Google Scholar 

  8. Fridrich J, Goljan M, Du R (2001) Reliable detection of LSB steganography in color and grayscale images. 27. https://doi.org/10.1145/1232454.1232466

  9. Ghosal SK, Mukhopadhyay S, Hossain S, Sarkar R (2020) Application of Lah transform for security and privacy of data through information hiding in telecommunication. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.3984

  10. He W, Zhou K, Cai J, Wang L, Xiong G (Nov. 2017) Reversible data hiding using multi-pass pixel value ordering and prediction-error expansion. J Vis Commun Image Represent 49:351–360. https://doi.org/10.1016/j.jvcir.2017.10.001

    Article  Google Scholar 

  11. Hore A, Ziou D (2010) Image Quality Metrics: PSNR vs. SSIM. In 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey. pp. 2366–2369. https://doi.org/10.1109/ICPR.2010.579

  12. Jana B, Giri D, Mondal SK (2017) Partial reversible data hiding scheme using (7, 4) Hamming code. Multimed Tools Appl 76(20):21691–21706. https://doi.org/10.1007/s11042-016-3990-1

    Article  Google Scholar 

  13. Jana B, Giri D, Kumar Mondal S (2018) Dual image based reversible data hiding scheme using (7,4) Hamming code. Multimed Tools Appl 77(1):763–785. https://doi.org/10.1007/s11042-016-4230-4

    Article  Google Scholar 

  14. Khan A, Siddiqa A, Munib S, Malik SA (2014) A recent survey of reversible watermarking techniques. Inf Sci 279:251–272. https://doi.org/10.1016/j.ins.2014.03.118

    Article  Google Scholar 

  15. Kim C, Yang C-N (2015) Steganography based on Grayscale images using (5, 3) Hamming code. In: Shi Y-Q, Kim HJ, Pérez-González F, Yang C-N (eds) Digital-forensics and watermarking, vol 9023. Springer International Publishing, Cham, pp 588–598

    Chapter  Google Scholar 

  16. Kim C, Shin D, Kim B-G, Yang C-N (2018) Secure medical images based on data hiding using a hybrid scheme with the Hamming code, LSB, and OPAP. J Real-Time Image Process 14(1):115–126. https://doi.org/10.1007/s11554-017-0674-7

    Article  Google Scholar 

  17. Kodovsky J, Fridrich J, Holub V (2012) Ensemble classifiers for Steganalysis of digital media. IEEE Trans Inf Forensics Secur 7(2):432–444. https://doi.org/10.1109/TIFS.2011.2175919

    Article  Google Scholar 

  18. Liang HY, Cheng CH, Yang CY, Zhang KF (2013) A blind data hiding technique with error correction abilities and a high embedding payload. J Appl Res Technol 11(2):259–271. https://doi.org/10.1016/S1665-6423(13)71536-0

    Article  Google Scholar 

  19. Lin J, Weng S, Zhang T, Ou B, Chang C-C (2020) Two-layer reversible data hiding based on AMBTC image with (7, 4) Hamming code. IEEE Access 8:21534–21548. https://doi.org/10.1109/ACCESS.2019.2962230

    Article  Google Scholar 

  20. Liu H-H, Lee C-M (2019) High-capacity reversible image steganography based on pixel value ordering. EURASIP J Image Vid Process 2019(1):54. https://doi.org/10.1186/s13640-019-0458-z

    Article  Google Scholar 

  21. Lu T-C, Tseng C-Y, Huang S-W, Nhan T (2018) Pixel-Value-Ordering based Reversible Information Hiding Scheme with Self-Adaptive Threshold Strategy. Symmetry 10(12):764. https://doi.org/10.3390/sym10120764

    Article  Google Scholar 

  22. Maniriho P, Ahmad T (2019) Information hiding scheme for digital images using difference expansion and modulus function. J King Saud Univ - Comput Inf Sci 31(3):335–347. https://doi.org/10.1016/j.jksuci.2018.01.011

    Article  Google Scholar 

  23. Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inf Foren Secur 5(2):215–224. https://doi.org/10.1109/TIFS.2010.2045842

    Article  Google Scholar 

  24. SIPI Image Database. http://sipi.usc.edu/database/ (Accessed 05 Apr 2019)

  25. Voloshynovskiy S, Herrigel A, Baumgaertner N, Pun T A Stochastic Approach to Content Adaptive Digital Image Watermarking. In: Pfitzmann A (ed) Information Hiding, vol 1768, 2000. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 211–236

  26. Wang J, Ni J, Zhang X, Shi Y (2017) Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans Cybern 47(2):315–326

    Google Scholar 

  27. Wang H, Lin H, Gao X, Cheng W, Chen Y (2019) Reversible AMBTC-based data hiding with security improvement by chaotic encryption. IEEE Access 7:38337–38347

    Article  Google Scholar 

  28. Wang J, Chen X, Shi Y (2019) Unconstraint optimal selection of side information for histogram shifting based reversible data hiding. IEEE Access 7:35564–35578

    Article  Google Scholar 

  29. Wang P, Cai B, Xu S, Chen B (2020) Reversible data hiding scheme based on adjusting pixel modulation and block-wise compression for encrypted images. IEEE Access 8:28902–28914

    Article  Google Scholar 

  30. Watermarking Virtual Laboratory (Wavila) of the European Network of Excellence ECRYPT (http://www.ecrypt.eu.org/), “Break Our Watermarking System 2nd Ed.” http://bows2.ec-lille.fr/index.php?mode=VIEW&tmpl=index2 (Accessed 06 May 2020)

  31. Wu X, Yang C-N, Liu Y-W (Oct. 2020) A general framework for partial reversible data hiding using Hamming code. Signal Process 175:107657. https://doi.org/10.1016/j.sigpro.2020.107657

    Article  Google Scholar 

  32. Wu X, Yang C-N, Liu Y-W (2020) High capacity partial reversible data hiding by Hamming code. Multimed Tools Appl 79(31–32):23425–23444. https://doi.org/10.1007/s11042-020-09098-9

    Article  Google Scholar 

  33. Ying Q, Qian Z, Zhang X, Ye D (2019) Reversible data hiding with image enhancement using histogram shifting. IEEE Access 7:46506–46521

    Article  Google Scholar 

  34. Zhang W, Wang S, Zhang X (2007) Improving embedding efficiency of covering codes for applications in steganography. IEEE Commun Lett 11(8):680–682. https://doi.org/10.1109/LCOMM.2007.070438

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Hanoi Open University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Duc Nguyen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.D., Le, H.D. A reversible data hiding scheme based on (5, 3) Hamming code using extra information on overlapped pixel blocks of grayscale images. Multimed Tools Appl 80, 13099–13120 (2021). https://doi.org/10.1007/s11042-020-10347-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10347-0

Keywords

Navigation