Skip to main content

Advertisement

Log in

Exploiting pose dynamics for human recognition from their gait signatures

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Computer vision-based gait recognition has evolved into an active area of research since the past decade, and a number of useful algorithms have been proposed over the years. Among the existing gait recognition techniques, pose-based approaches have gained more popularity due to their inherent capability of capturing the silhouette shape variation during walking at a high resolution. However, a short-coming of the existing pose-based gait recognition approaches is that their effectiveness depends on the accuracy of a pre-defined set of key poses and are, in general, not robust against varying walking speeds. In this work, we propose an improvement to the existing pose-based approaches by considering a gallery of key pose sets corresponding to varying walking speeds instead of just a single key pose set. This gallery is generic and is constructed from a large set of subjects that may/may not include the subjects present in the gait recognition data set. Comparison between a pair of training and test sequences is done by mapping each of these into the individual key pose sets present in the above gallery set, computing the Active Energy Image for each key pose, and next observing the frequency of matched key poses in all the sets. Our approach has been evaluated on two popular gait data sets, namely the CASIA B data and the TUMGAID data. A thorough experimental evaluation along with comparison with state-of-the-art techniques verify the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal H, Vishwakarma DK (2018) Covariate conscious approach for gait recognition based upon Zernike moment invariants. IEEE Trans Cognit Develop Syst 10(2):397–407

    Article  Google Scholar 

  2. Alotaibi M, Mahmood A (2017) Improved gait recognition based on specialized deep convolutional neural network. Comput Vis Image Underst 164:103–110

    Article  Google Scholar 

  3. Babaee M, Li L, Rigoll G (2018) Gait recognition from incomplete gait cycle. In: Proceedings of the 25th IEEE international conference on image processing (ICIP). IEEE, Piscataway, pp 768–772

  4. Babaee M, Li L, Rigoll G (2019) Person identification from partial gait cycle using fully convolutional neural networks. Neurocomputing 338:116–125

    Article  Google Scholar 

  5. Bashir K, Xiang T, Gong S (2010) Gait recognition without subject cooperation. Pattern Recogn Lett 31(13):2052–2060

    Article  Google Scholar 

  6. Battistone F, Petrosino A (2019) TGLSTM: A time based graph deep learning approach to gait recognition. Pattern Recogn Lett 126:132–138

    Article  Google Scholar 

  7. Ben X, Gong C, Zhang P, Yan R, Wu Q, Meng W (2020) Coupled bilinear discriminant projection for cross-view gait recognition. IEEE Trans Circ Syst Video Technol 30(3):734–747

    Article  Google Scholar 

  8. Bouchrika I, Goffredo M, Carter J, Nixon M (2011) On using gait in forensic biometrics. J Forensic Sci 56(4):882–889

    Article  Google Scholar 

  9. Boulgouris NV, Huang X (2013) Gait recognition using HMMs and dual discriminative observations for sub-dynamics analysis. IEEE Trans Image Process 22(9):3636–3647

    Article  Google Scholar 

  10. Chattopadhyay P, Roy A, Sural S, Mukhopadhyay J (2014) Pose depth volume extraction from RGB-D streams for frontal gait recognition. J Visual Commun Image Represent 25(1):53–63

    Article  Google Scholar 

  11. Chattopadhyay P, Sural S, Mukherjee J (2014) Exploiting pose information for gait recognition from depth streams. In: Proceedings of the european conference on computer vision workshops. Springer, New York, pp 341–355

  12. Chaurasia P, Yogarajah P, Condell J, Prasad G (2017) Fusion of random walk and discrete fourier spectrum methods for gait recognition. IEEE Trans Human-Mach Syst 47(6):751–762

    Article  Google Scholar 

  13. Chen C, Liang J, Zhao H, Hu H, Tian J (2009) Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recogn Lett 30(11):977–984

    Article  Google Scholar 

  14. Chen J, Liu J (2014) Average gait differential image based human recognition. The Scientific World Journal, vol. 2014

  15. Choudhury SD, Tjahjadi T (2015) Robust View-Invariant multiscale gait recognition. Pattern Recogn 48(3):798–811

    Article  Google Scholar 

  16. De Lima VC, Schwartz WR (2019) Gait recognition using pose estimation and signal processing. In: Proceedings of the Iberoamerican congress on pattern recognition. Springer, New York, pp 719–728

  17. Guan Y, Li C-T, Roli F (2015) On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 37(7):1521–1528

    Article  Google Scholar 

  18. Gupta SK, Sultaniya GM, Chattopadhyay P (2020) An efficient descriptor for gait recognition using spatio-temporal cues. In: Proceedings of the IEMGraph, emerging technology in modelling and graphics. Springer, New York, pp 85–97

  19. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322

    Article  Google Scholar 

  20. Hofmann M, Geiger J, Bachmann S, Schuller B, Rigoll G (2014) The TUM gait from audio, image and depth (GAID) database: multimodal recognition of subjects and traits. J Vis Commun Image Represent 25(1):195–206

    Article  Google Scholar 

  21. Huang X, Boulgouris NV (2012) Gait recognition with shifted energy image and structural feature extraction. IEEE Trans Image Process 21(4):2256–2268

    Article  MathSciNet  Google Scholar 

  22. Huang S, Elgammal A, Lu J, Yang D (2015) Cross-speed gait recognition using speed-invariant gait templates and globality-locality preserving projections. IEEE Trans Inform Foren Secur 10(10): 2071–2083

    Article  Google Scholar 

  23. Huberty CJ (1975) Discriminant Analysis. (https://in.mathworks.com/help/stats/classify.html)

  24. Isaac ER, Elias S, Rajagopalan S, Easwarakumar K (2017) View-Invariant Gait recognition through genetic template segmentation. Signal Process Lett 24(8):1188–1192

    Article  Google Scholar 

  25. Jacoby WG (2000) LOESS: A nonparametric, graphical tool for depicting relationships between variables. Elect Stud 19(4):577–613

    Article  Google Scholar 

  26. Lai Z, Xu Y, Jin Z, Zhang D (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circ Syst Video Technol 24 (10):1651–1662

    Article  Google Scholar 

  27. Lam TH, Cheung KH, Liu JN (2011) Gait flow image: a Silhouette-Based gait representation for human identification. Pattern Recogn 44(4):973–987

    Article  Google Scholar 

  28. Lam TH, Lee RS (2006) A new representation for human gait recognition: motion silhouettes image (MSI). In: Proceedings of the international conference on biometrics. Springer, New York, pp 612–618

  29. Lee H, Hong S, Nizami IF, Kim E (2009) A noise robust gait representation: motion energy image, . Int J Cont Autom Syst 7(4):638–643

    Article  Google Scholar 

  30. Liu Z, Sarkar S (2006) Improved gait recognition by gait dynamics normalization. IEEE Trans Pattern Anal Mach Intell 6:863–876

    Google Scholar 

  31. Liu J, Zheng N (2007) Gait history image: a novel temporal template for gait recognition. In: Proceedings of the international conference on multimedia and expo. IEEE, Piscataway, pp 663–666

  32. Roy A, Sural S, Mukherjee J (2012) Gait recognition using pose kinematics and pose energy image. Signal Process 92(3):780–792

    Article  Google Scholar 

  33. Shiraga K, Makihara Y, Muramatsu D, Echigo T, Yagi Y (2016) GEINEt: view-invariant gait recognition using a convolutional neural network. In: Proceedings of the international conference on biometrics. IEEE, Piscataway, pp 1–8

  34. Sivapalan S, Chen D, Denman S, Sridharan S, Fookes C (2011) Gait energy volumes and frontal gait recognition using depth images. In: Proceedings of the international joint conference on biometrics. IEEE, Piscataway, pp 1–6

  35. Sokolova A, Konushin A (2018) Pose-Based Deep gait recognition. IET Biomet 8(2):134–143

    Article  Google Scholar 

  36. Takemura N, Makihara Y, Muramatsu D, Echigo T, Yagi Y (2017) On Input/Output architectures for convolutional neural network-based cross-view gait recognition. IEEE Trans Circ Syst Video Technol 29(9):2708–2719

    Article  Google Scholar 

  37. Wang F, Zhang C (2007) Feature extraction by maximizing the average neighborhood margin. In: Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Piscataway, pp 1–8

  38. Wang C, Zhang J, Wang L, Pu J, Yuan X (2012) Human identification using temporal information preserving gait template. IEEE Trans Pattern Anal Mach Intell 34(11):2164–2176

    Article  Google Scholar 

  39. Wu Z, Huang Y, Wang L (2015) Learning representative deep features for image set analysis. IEEE Trans Multimed 17(11):1960–1968

    Article  Google Scholar 

  40. Wu Z, Huang Y, Wang L, Wang X, Tan T (2017) A comprehensive study on cross-view gait based human identification with deep CNNs. IEEE Trans Pattern Anal Mach Intell 39(2):209–226

    Article  Google Scholar 

  41. Yang X, Zhou Y, Zhang T, Shu G, Yang J (2008) Gait recognition based on dynamic region analysis. Signal Process 88(9):2350–2356

    Article  Google Scholar 

  42. Yu S, Chen H, Reyes G, Edel B, Poh N (2017) GaitGAN: invariant gait feature extraction using generative adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 30–37

  43. Yu S, Chen H, Wang Q, Shen L, Huang Y (2017) Invariant feature extraction for gait recognition using only one uniform model. Neurocomputing 239:81–93

    Article  Google Scholar 

  44. Yu S, Liao R, An W, Chen H, García EB, Huang Y, Poh N (2019) GaitGANv2: invariant gait feature extraction using generative adversarial networks. Pattern Recognit 87:179–189

    Article  Google Scholar 

  45. Zhang C, Zhang S, Yang J, Cheng W (2015) Gait recognition based on energy accumulation images. In: Proceedings of the chinese conference on biometric recognition. Springer, New York, pp 456–463

  46. Zhang E, Zhao Y, Xiong W (2010) Active energy image plus 2DLPP for gait recognition. Signal Process 90(7):2295–2302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar Gupta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Chattopadhyay, P. Exploiting pose dynamics for human recognition from their gait signatures. Multimed Tools Appl 80, 35903–35921 (2021). https://doi.org/10.1007/s11042-020-10071-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10071-9

Keywords

Navigation