Skip to main content

Presence of dynamics of quantum dots in the digital signature using DNA alphabet and chaotic S-box


The integrity and authenticity of the message, and it’s nonrepudiation, are provided by digital signatures. We introduce quantum digital signature schemes based on Quantum Dots, where DNA coding is used to increase the intricacy of phase space. We attain the optimal security standard by constructing a deterministic dynamic system in a finite phase space with n points and by using symbolic dynamics. Also, given the chaotic Substitution box(S-box), a confusing step has been added for greater security. The introduced quantum dynamical map is used to create procedures to resistance again the common attacks in the digital signature such as non-repudiation, unforgeability, and transferability. Its security depends on the length of the signature, directly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Adleman L (1994) Molecular computation of solutions to combinatorial problems. Sci New Series 266:1021

    Google Scholar 

  2. 2.

    Advanced encryption standard (aes) (2001) Federal Information Processing Standards Publication 197 Std

  3. 3.

    Ahadpour S, Hematpour N (2012) Quantum chaos in quantum dots coupled to bosons. arXiv:1207.5590v1

  4. 4.

    Akhshani A, Behnia S, Akhavan A, Lim SC, Hassan Z (2010) Pseudo random number generator based on synchronized chaotic maps. Int J Modern Phys C 21:275–290

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Amin S, Saeb M, El-Gindi S (2006) A DNA-based implementation of YAEA encryption algorithm. In: Computational intelligence, p 120

  6. 6.

    Andersson E, Curty M, Jex I (2006) Experimentally realizable quantum comparison of coherent states and its applications. Phys Rev A 74:022304

    Google Scholar 

  7. 7.

    Ardieta JLH, Tablas AIG, Fuentes JMD, Ramos B (2013) A taxonomy and survey of attacks on digital signatures. Comput Secur 34:67–112

    Google Scholar 

  8. 8.

    Azimi Z, Ahadpour S (2020) Color image encryption based on DNA encoding and pair coupled chaotic maps. Multimed Tools Appl 79:1727–1744

    Google Scholar 

  9. 9.

    Behnia S, Ahadpour S, Ayubi P (2014) Design and implementation of coupled chaotic maps in watermarking. Appl Soft Comput 21:481–490

    Google Scholar 

  10. 10.

    Behnia S, Akhavan A, Akhshani A, Samsudin A (2011) A novel dynamic model of pseudo random number generator. J Comput Appl Math 235:3455–3463

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Behnia S, Akhshani A, Ahadpour S, Mahmodi H, Akhavan A (2007) A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps. Phys Lett A 366:391–396

    MATH  Google Scholar 

  12. 12.

    Behnia S, Akhshani A, Mahmodi H, Akhavan A (2008) A novel algorithm for image encryption based on mixture of chaotic maps. Chaos Solitons Fractals 35:408–419

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Behnia S, Fathizadeh S, Ziaei J (2016) Controlling charge current through a DNA based molecular transistor. 381:36–43

  14. 14.

    Biham E, Shamir A (1991) Differential cryptanalysis of des like cryptosystems. J Cryptol 4:3–72

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Borda M, Tornea O, Hodorogea T (2009) Secret writing by dna hybridization. Acta Technica Napocensis Electron Commun 50:21

    Google Scholar 

  16. 16.

    Castagnino M, Lombardi O (2009) Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing. Physica A 388:247–267

    MathSciNet  Google Scholar 

  17. 17.

    Cavusoglu U, Kaçar S., Zengin A, Pehlivan I (2018) A novel hybrid encryption algorithm based on chaos and s-aes algorithm. Nonlinear Dyn 91:939–956

    MATH  Google Scholar 

  18. 18.

    Chen F, Liu W, Chen S, Wangi Z (2018) Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf Process 17:1–14

    MathSciNet  Google Scholar 

  19. 19.

    Chen X, Xu G, Su Y, Yang Y (2014) Robust variations of secret sharing through noisy quantum channel. Quantum Inform Comput 14:0589

    MathSciNet  Google Scholar 

  20. 20.

    Chen J, Zhang C, Chen JM, Zhang CM, Wang Q (2020) Improving the performance of decoy-state quantum digital signature with single-photon-added coherent sources. Quantum Inf Process 19:198

    Google Scholar 

  21. 21.

    Clarke PJ, Collins RJ, Dunjko V, Andersson E, Jeffers J, Buller GS (2012) Experimental demonstration of quantum digital signatures using phase–encoded coherent states of light. Nat Commun 3:1174

    Google Scholar 

  22. 22.

    Clelland C, Risca V, Bancroft C (1999) Hiding messages in dna microdots. Nature 339:533

    Google Scholar 

  23. 23.

    Collins R, Amiri R, Fujiwara M, Honjo T, Shimizu K, Tamaki K, Takeoka M, Andersson E, Buller G, Sasaki M (2016) Experimental transmission of quantum digital signatures over 90km of installed optical fiber using a differential phase shift quantum key distribution system. Opt Lett 41:4883

    Google Scholar 

  24. 24.

    Cusick T, Stanica P (2017) Cryptographic boolean functions and applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  25. 25.

    Diffie W, Hellman ME (1976) New directions in cryptography. IEEE Trans Inf Theory 22:644–654

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Donaldson R, Collins R, Kleczkowska K, Amiri R, Wallden P, Dunjko V, Jeffers J, Andersson E, Buller G (2016) Experimental demonstration of kilometer-range quantum digital signatures. Phys Rev A 93:012329

    Google Scholar 

  27. 27.

    Dunjko V, Wallden P, Andersson E (2014) Quantum digital signatures without quantum memory. Phys Rev Lett 112:040502

    Google Scholar 

  28. 28.

    Emary C, Brandes T (2003) Chaos and phase transitions in quantum dots coupled to bosons. Phys Rev E 67:0662031–06620322

    Google Scholar 

  29. 29.

    Enayatifar R, Abdullah AH, Isnin IF (2014) Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng 56:83–93

    Google Scholar 

  30. 30.

    Gehani A, LaBean TH, Reif JH (2000) DNA-Based cryptography. DIMACS series in discrete mathematics. Theor Comput Sci 54:233–249

    MATH  Google Scholar 

  31. 31.

    Gholamin P, Sheikhani A (2017) A new three-dimensional chaotic system: dynamical properties and simulation. Chin J Phys 55:1300

    MathSciNet  Google Scholar 

  32. 32.

    Gottesman D, Chuang I (2001) Quantum digital signatures. arXiv:0105032v2

  33. 33.

    Harrison P, Valavanis A (2016) Quantum wells, wires and dots: theoretical and computational physics of semiconductor Nanostructures 4th edn

  34. 34.

    Heider D, Barnekow A (2007) Dna-based watermarks using the dna-crypt algo- rithm. BMC Bioinform 8:176

    Google Scholar 

  35. 35.

    Hematpour N, Ahadpour S, Behnia S (2018) Digital signature: quantum chaos approach and bell states, Chapter 9 Springer Science and Business Media LLC

  36. 36.

    Herranz J (2009) On the transferability of private signatures. Inf Sci 179:1647–1656

    MathSciNet  Google Scholar 

  37. 37.

    Hirsch JG, Castaños O, Pena RL, Achar EN (2012) Mean field description of the Dicke Model, foundations of probability and physics 6 alPConf. Proc 1424:144–148

    MATH  Google Scholar 

  38. 38.

    Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58:301

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Hussain I, Tariq S, Muhammad A (2012) A novel approach for designing substitution-boxes based on nonlinear chaotic algorithm. Nonlinear Dyn 70:1791–1794

    MathSciNet  Google Scholar 

  40. 40.

    Jafarizadeh MA (2001) Hierarchy of chaotic maps with an invariant measure. J Math Phys 104:1013–1028

    MathSciNet  MATH  Google Scholar 

  41. 41.

    Jafarizadeh M, Foroutan M, Ahadpour S (2006) Hierarchy of rational order families of chaotic maps with an invariant measure. Pramana 67:1073–1086

    Google Scholar 

  42. 42.

    Jakimoski G, Kocarev L (2001) Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans Circ Syst I Fundament Theory Appl 48:163–169

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Khan M, Shah T, Mahmood H, Asif M, Iqtadar G (2012) A novel technique for the construction of strong s-boxes based on chaotic lorenz systems. Nonlinear Dyn 70:2303–2311

    MathSciNet  Google Scholar 

  44. 44.

    Kneifel JD (1999) National institute of standards and technology, FIPS PUB 46-3: data encryption standard (DES), Super-sedes FIPS, pp 46–2

  45. 45.

    Kocarev L, Lian SH (2011) Chaos-based cryptography theory, algorithms and applications. Springer, Berlin, p 397

    MATH  Google Scholar 

  46. 46.

    Lambic D (2020) A new discrete-space chaotic map based on the multiplication of integer numbers and its application in s-box design. Nonlinear Dyn pp 1–13

  47. 47.

    Li J, Chen X, Xu G, Yang Y, Li ZP (2015) Perfect quantum network coding independent of classical network solutions. IEEE Commun Lett 19:115

    Google Scholar 

  48. 48.

    Liu Y, Zhang J, Han D, Wu P, Sun Y, Moon YSH (2020) A multidimensional chaotic image encryption algorithm based on the region of interest. Multimed Tools Appl pp 1–37

  49. 49.

    Lou X, Chen Z, Guo Y (2018) A high capacity quantum weak blind signature based on logistic chaoticmaps. Quantum Inf Process 17:251

    Google Scholar 

  50. 50.

    Lou X, Wang Y, Long H, Yang Y, Li J (2020) Sequential quantum multiparty signature based on quantum fourier transform and chaotic system. IEEE Access 8:13218–13227

    Google Scholar 

  51. 51.

    Matsui M (1993) Linear cryptanalysis method for des cipher, Workshop on the theory and application of cryptographic techniques. Springer, Berlin, pp 386–397

    Google Scholar 

  52. 52.

    Mollaeefar M, Sharif A, Nazari M (2017) A novel encryption scheme for colored image based on high level chaotic maps. Multimed Tools Appl 76:607–629

    Google Scholar 

  53. 53.

    Ozkaynak F, Yavuz S (2013) Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dyn 74:551–557

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Rauhe H, Vopper G, Feldkamp U, Banzhaf W, Howard JC (2000) Digital DNA molecules. In: Proceedings 6th DIMACS workshop on DNA based computers, p 13

  55. 55.

    Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21:120–126

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Schneier B (2007) Applied cryptography: protocols, algorithms, and source code in c. Wiley, New Jersey

    MATH  Google Scholar 

  57. 57.

    Sinha A, Singh K (2003) A technique for image encryption using digital signature. Opt Commun 218:229–234

    Google Scholar 

  58. 58.

    Strogatz SH (2000) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Cambridge, p 478

    Google Scholar 

  59. 59.

    Sun Y, Xu CH, Yu Y, Mu Y (2011) Strongly unforgeable proxy signature scheme secure in the standard model. J Syst Softw 84:1471–1479

    Google Scholar 

  60. 60.

    Vaudenay S (2006) A classical introduction to cryptography applications for communications security. springer Science+Business Media Inc, New York, pp 260–261

    MATH  Google Scholar 

  61. 61.

    Wallden P, Dunjko V, Andersson E (2014) Minimum-cost quantum measurements for quantum information. J Phys A 47:125303

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Wallden P, Dunjko V, Kent A, Andersson E (2015) Quantum digital signature with quantum key distribution components. Phys Rev A 91:0423041–10

    Google Scholar 

  63. 63.

    Wang Y, Wong KW, Liao X, Xiang T (2009) A block cipher with dynamic S-boxes based on tent map. Commun Nonlinear Sci Numer Simul 14:3089–3099

    MathSciNet  MATH  Google Scholar 

  64. 64.

    Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738

    Google Scholar 

  65. 65.

    Webster A, Tavares S (1985) On the design of s-boxes. In: Conference on the theory and application of cryptographic techniques. springer, New York, pp 523–34

  66. 66.

    Wei Z, Chen X, Niu X, Yang YX (2015) The quantum steganography protocol via quantum noisy channels. Int J Theor Phys 54:2505

    MathSciNet  MATH  Google Scholar 

  67. 67.

    Weng-Long C, Shu-Chien H, Weicheng LK (2011) Fast parallel DNA-based algorithms for molecular computation: discrete logarithm. J Supercomputing 56:129–63

    Google Scholar 

  68. 68.

    Yin HL, Fu Y, Chen ZB (2016) Practical quantum digital signature. Phys Rev A 93:0323161–12

    Google Scholar 

  69. 69.

    Yin HL, Fu Y, Liu H, Tang QJ, Wang J, You LX, Zhang WJ, Chen SJ, Wang Z, Zhang Q, Chen TY, Chen ZB, Pan JW (2017) Experimental quantum digital signature over 102 km. Phys Rev A 95:0323341–9

    Google Scholar 

  70. 70.

    Zhang H, Ma T, Huang G, Wang Z (2009) Robust global exponential syn- chronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans Syst Man Part B Cybern 40:831–844

    Google Scholar 

  71. 71.

    Zhang CM, Zhu Y, Chen JJ, Wang Q (2020) Practical quantum digital signature with configurable decoy states. Quantum Inf Process 19:1–7

    MathSciNet  Google Scholar 

  72. 72.

    Zheng XD, Xu J, Li Parallel W (2009) DNA Arithmetic operation based on n-moduli set. Appl Math Comput 212:177–184

    MathSciNet  MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sodeif Ahadpour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Calculation of Lyapunov exponents

Appendix A: Calculation of Lyapunov exponents

Entropies are basic invariants for dynamical systems. A closely related quantity to the entropy and information flow in the dynamical system is a Lyapunov exponent. The Lyapunov number is independent of the initial point, provided that the motion inside the invariant manifold is ergodic [58], defined as:

$$ \lambda=lim_{n\rightarrow\infty}\ln\mid D_{<J_{\pm(n)}>}{(J_{\pm(n+1)}}(a,a^{+},\alpha))\mid $$

In the nonchaotic area of the parameter, the Lyapunov exponent is negative, while the positive one shows the measurability of system. The variation of Lyapunov exponent for introduced quantum dynamical systems is presented with the Fig. 8a. It is obvious that in the introduced example, (5), the chaotic domain is (3.7 < α < 4). The dynamical system time series, which is shown in Fig. 8b, confirm the chaotic behavior.

Fig. 8

a The variation of the Lyapunov characteristic exponent of introduced example (5) in term of parameters α. b Time series diagram of dynamical system (5) for J+(0) = 0.3,N = 100,α = 3.8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hematpour, N., Ahadpour, S. & Behnia, S. Presence of dynamics of quantum dots in the digital signature using DNA alphabet and chaotic S-box. Multimed Tools Appl 80, 10509–10531 (2021).

Download citation


  • Quantum digital signature
  • Quantum dots
  • Chaos
  • DNA coding
  • Substitution box(S-box)
  • Repudiation
  • Forgery