Morph_SPCNN model and its application in breast density segmentation


Breast density is known as a significant indicator of breast cancer risk prediction and greatly reduces the digital mammograms sensitivity. In this work, based on the simple pulse coupled neural network (SPCNN), a novel Morph_SPCNN model is proposed for dealing with the limitations of over-segmentation that commonly existed in density segmentation of mammograms. To evaluate the proposed model, the segmentation result is employed as a feature map of the breast density classification system. In addtion, the texture features of mammogram calculated based on the gray level co-occurrence matrix (GLCM) and the statistical features (mean, skewness, kurtosis) are extracted and input to the support vector machine (SVM) for breast density classification. Finally, the performance of SVM classifier is evaluated based on the ten-fold cross-validation. Our method is verified both on the MIAS dataset, DDSM database and hybrid dataset (MIAS database and Gansu Provincial Academy of Medical Sciences (GPAMS) database), respectively achieving 87.80%, 94.89% and 95.37% accuracy for breast density classification. The experimental results indicate that our proposed method has greatly improved the performance of breast density segmentation and classification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    AC Society (2019) Cancer facts and figures 2019

  2. 2.

    AC of Radiology, D’Orsi CJ et al (2013) ACR BI-RADS atlas: breast imaging reporting and data system; mammography, ultrasound, magnetic resonance imaging, follow-up and outcome monitoring, data dictionary, ACR American College of Radiology

  3. 3.

    Anguita D, Ridella S, Rivieccio F (2005) K-fold generalization capability assessment for support vector classifiers. In: Neural networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE international joint conference on.

  4. 4.

    Angulo J (2016) Generalised morphological image diffusion. Nonlinear Anal Theory Methods Appl 134:1–30.

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    B.C. U.K. (2019) Key facts about breast cancer

  6. 6.

    Blot L, Zwiggelaar R (2001) Background texture extraction for the classification of mammographic parenchymal patterns. In: MIUA, pp 145–148

  7. 7.

    Bosch A, Munoz X, Oliver A, Marti J (2006) Modeling and classifying breast tissue density in mammograms. 2:1552–1558.

  8. 8.

    Bowyer K, Kopans D, Kegelmeyer W, Moore R, Sallam M, Chang K, Woods K (1996) The digital database for screening mammography. In: Third international workshop on digital mammography, vol 58, p 27

  9. 9.

    Chang C-C, Lin C-J (2011) Libsvm: A library for support vector machines. ACM Trans Intell Syst Technol.

  10. 10.

    Chen Z, Denton ERE, Zwiggelaar R (2011) Local feature based mammographic tissue pattern modelling and breast density classification. 1:351–355.

  11. 11.

    Chen Y, Park S, Ma Y, Ala R (2011) A new automatic parameter setting method of a simplified pcnn for image segmentation. IEEE Trans Neural Netw 22(6):880–892.

    Article  Google Scholar 

  12. 12.

    Chen Y, Tao J, Liu L, Xiong J, Xia R, Xie J, Zhang Q, Yang K (2020) Research of improving semantic image segmentation based on a feature fusion model. J Ambient Intell Humaniz Comput.

  13. 13.

    Chen Y, Wang J, Chen X, Zhu M, Yang K, Wang Z, Xia R (2019) Single-image super-resolution algorithm based on structural self-similarity and deformation block features. IEEE Access 7:58791–58801.

    Article  Google Scholar 

  14. 14.

    Chen Y, Wang J, Liu S, Chen X, Xiong J, Xie J, Yang K (2019) Multiscale fast correlation filtering tracking algorithm based on a feature fusion model. Concurr Comput Pract Exp e5533.

  15. 15.

    Chen Y, Xiong J, Xu W, Zuo J (2019) A novel online incremental and decremental learning algorithm based on variable support vector machine. Clust Comput 22(3):7435–7445.

    Article  Google Scholar 

  16. 16.

    Chen Y, Xu W, Zuo J, Yang K (2019) The fire recognition algorithm using dynamic feature fusion and iv-svm classifier. Clust Comput 22 (3):7665–7675.

    Article  Google Scholar 

  17. 17.

    Chen Y, Tao J, Zhang Q, Yang K, Chen X, Xiong J, Xia R, Xie J Saliency detection via the improved hierarchical principal component analysis method. Wirel Commun Mob Comput (Online) 2020.

  18. 18.

    Cortes C, Vapnik V (1995) Support-vector networks, vol 20.

  19. 19.

    Deng J, Ma Y, Deng-ao L, Zhao J, Liu Y, Zhang H (2020) Classification of breast density categories based on se-attention neural networks. Comput Methods Programs Biomed 105489.

  20. 20.

    Deng XY, Yi-De MA (2012) Pcnn model automatic parameters determination and its modified model. Acta Electronica Sinica 5(5):955–964.

    Google Scholar 

  21. 21.

    Eckhorn R, Reitboeck H, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comput 2(3):293–307.

    Article  Google Scholar 

  22. 22.

    Ekblad U, Kinser JM, Atmer J, Zetterlund N (2004) The intersecting cortical model in image processing. Nucl Instrum Methods Phys Res B 525(1):392–396.

    Article  Google Scholar 

  23. 23.

    Elshinawy MY, Badawy AHA, Abdelmageed WW, Chouikha MF (2011) Effect of breast density in selecting features for normal mammogram detection. In: IEEE International symposium on biomedical imaging: from nano to macro.

  24. 24.

    Eng A, Gallant Z, Shepherd J, Mccormack V, Li J, Dowsett M, et al. (2014) Digital mammographic density and breast cancer risk:a case-control study of six alternative density assessment methods. Breast Cancer Res 16:439.

    Article  Google Scholar 

  25. 25.

    Gong X, Yang Z, Wang D, Qi Y, Ma Y (2019) Breast density analysis based on glandular tissue segmentation and mixed feature extraction. Multimed Tools Appl 78(5):31185–31214.

    Article  Google Scholar 

  26. 26.

    Gu X (2008) Feature extraction using unit-linking pulse coupled neural network and its applications. Neural Process Lett 27(1):25–41.

    Article  Google Scholar 

  27. 27.

    Hage IS, Hamade RF (2013) Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization. Comput Med Imaging Graph 37(7-8).

  28. 28.

    Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R (2018) Deep learning in mammography and breast histology, an overview and future trends. Med Image Anal 35:303–312.

    Google Scholar 

  29. 29.

    Hassanien AE, Kim TH (2012) Breast cancer mri diagnosis approach using support vector machine and pulse coupled neural networks. J Appl Log 10(4):277–284.

    MathSciNet  Article  Google Scholar 

  30. 30.

    He W, Denton ERE, Stafford K, Zwiggelaar R (2011) Mammographic image segmentation and risk classification based on mammographic parenchymal patterns and geometric moments. Biomed Signal Process Control 6(3):321–329.

    Article  Google Scholar 

  31. 31.

    Holzinger A (2016) Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform 3(2):119–131

    Article  Google Scholar 

  32. 32.

    Holzinger A, Carrington AM, Muller H (2020) Measuring the quality of explanations: The system causability scale (scs): comparing human and machine explanations. Künstliche Intelligenz 1–6

  33. 33.

    Holzinger A, Kieseberg P, Weippl E, Tjoa AM (2018) Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable ai.

  34. 34.

    Holzinger A, Langs G, Denk H, Zatloukal K, Muller H (2019) Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip Rev Data Min Knowl Discov 9(4).

  35. 35.

    Hsu C, Lin C (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425.

    Article  Google Scholar 

  36. 36.

    Jia T, Zhang H, Bai YK (2015) Benign and malignant lung nodule classification based on deep learning feature. J Med Imaging Health Inform 5(8):1936–1940.

    Article  Google Scholar 

  37. 37.

    Johnson JL, Ritter D (1993) Observation of periodic waves in a pulse-coupled neuralnetwork. Opt Lett 18(15):1253–5.

    Article  Google Scholar 

  38. 38.

    Kinser JM (1996) Simplified pulse-coupled neural network. Proc SPIE 2760:563–567.

    Article  Google Scholar 

  39. 39.

    Kumar I, Bhadauria HS, Virmani J (2015) Wavelet packet texture descriptors based four-class birads breast tissue density classification. Procedia Comput Sci 70:76–84.

    Article  Google Scholar 

  40. 40.

    Kumar I, Bhadauria HS, Virmani J, Thakur S (2017) A classification framework for prediction of breast density using an ensemble of neural network classifiers. Biocybern Biomed Eng 37(1):217–228.

    Article  Google Scholar 

  41. 41.

    Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Netw 10(3):591–598.

    Article  Google Scholar 

  42. 42.

    Lian J, Li K (2020) A review of breast density implications and breast cancer screening. Clin Breast Cancer 12:30–38.

    Google Scholar 

  43. 43.

    Lian J, Yang Z, Sun W, Guo Y, Zheng L, Li J, et al. (2019) An image segmentation method of a modified spcnn based on human visual system in medical images. Neurocomputing 333:292–306.

    Article  Google Scholar 

  44. 44.

    Liao Z, Zhang R, He S, Zeng D, Wang J, Kim H-J (2019) Deep learning-based data storage for low latency in data center networks. IEEE Access 7:26411–26417.

    Article  Google Scholar 

  45. 45.

    Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In: 2019 IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp 3618–3627.

  46. 46.

    Lu X, Wang W, Shen J, Tai Y, Crandall DJ, Hoi SCH (2020) Learning video object segmentation from unlabeled videos. Comput Vis Pattern Recognit

  47. 47.

    Ma Y-D, Dai R-L, Li L (2002) Automated image segmentation using pulse coupled neural networks and image’s entropy. China Inst Commun 23 (1):46–51

    Google Scholar 

  48. 48.

    Ma Y, Dai R, Li L, Wei L (2002) Image segmentation of embryonic plant cell using pulse-coupled neural networks. Chin Sci Bull 47:169–173.

    Google Scholar 

  49. 49.

    Machida Y, Tozaki M, andss Tamiko Yoshida AS (2015) Breast density: the trend in breast cancer screening. Breast Cancer 22(3):253–261.

    Article  Google Scholar 

  50. 50.

    Malkov S, Shepherd JA, Scott CG, Tamimi RM, Ma L, et al. (2016) Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status. Breast Cancer Res 18(1):122.

    Article  Google Scholar 

  51. 51.

    Manduca A, Carston MJ, Heine JJ, Scott CG, Pankratz VS, Brandt KR, et al. (2009) Texture features from mammographic images and risk of breast cancer, Cancer Epidemiology. Biomarkers and Prevention 18(3):837–845.

    Article  Google Scholar 

  52. 52.

    Masci J, Angulo J, Schmidhuber J (2013) A learning framework for morphological operators using counter–harmonic mean. 7883:329–340.

  53. 53.

    McCormack AV (2006) Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6):1159–1169.

    Article  Google Scholar 

  54. 54.

    Mellouli D, Hamdani TM, Sanchez-Medina JJ, Ayed MB, Alimi AM (2019) Morphological convolutional neural network architecture for digit recognition. IEEE Trans Neural Netw Learn Syst 1–10.

  55. 55.

    Moon WK, Chang JF, Lo CM, Chang JM, Lee SH, Shin SU, et al. (2018) Quantitative breast density analysis using tomosynthesis and comparison with mri and digital mammography. Comput Methods Programs Biomed 154:99–107.

    Article  Google Scholar 

  56. 56.

    Muhimmah I (2006)

  57. 57.

    Muštra M, Grgić M, Delač K (2010) Feature selection for automatic breast density classification. In: International symposium elmar

  58. 58.

    Oliver A, Freixenet J, Marti R, Pont J, Perez E, Denton ERE, Zwiggelaar R (2008) A novel breast tissue density classification methodology 12(1):55–65.

  59. 59.

    Oliver A, Freixenet J, Martí R, Pont J, Pérez E, Denton ERE, Zwiggelaar R (2008) A novel breast tissue density classification methodology. IEEE Trans Inf Technol Biomed 12(1):55–65.

    Article  Google Scholar 

  60. 60.

    Oliver A, Freixenet J, Zwiggelaar R (2005).

  61. 61.

    Oliver A, Tortajada M, Lladó X, Freixenet J, Ganau S, Tortajada L, et al. (2015) Breast density analysis using an automatic density segmentation algorithm. J Digit Imaging 28:604–612.

    Article  Google Scholar 

  62. 62.

    Otsu N (2007) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern B Cybern 9(1):62–66.

    MathSciNet  Article  Google Scholar 

  63. 63.

    Parthalain NM, Jensen R, Shen Q, Zwiggelaar R (2010) Fuzzy-rough approaches for mammographic risk analysis. 14(2):225–244.

  64. 64.

    Petroudi S, Constantinou I, Tziakouri C, Pattichis MS, Pattichis CS (2013) Investigation of am-fm methods for mammographic breast density classification. 1–4.

  65. 65.

    Petroudi S, Kadir T, Brady M (2003).

  66. 66.

    Rampun A, Morrow P, Scotney B, Winder J (2017) Breast density classification using multiresolution local quinary patterns in mammograms. In: Conference on medical image understanding and analysis.

  67. 67.

    Rampun A, Scotney BW, Morrow PJ, Wang H (2019) Breast density classification using local septenary patterns: a multi-resolution and multi-topology approach. In: 2019 IEEE 32nd international symposium on computer-based medical systems (CBMS).

  68. 68.

    Ranganath HS, Kuntimad G (1996) Iterative segmentation using pulse-coupled neural networks. Proc SPIE Int Soc Opt En 2760:543–554.

    Google Scholar 

  69. 69.

    Remes V, Haindl M (2015) Classification of breast density in x-ray mammography. In: International workshop on computational intelligence for multimedia understanding.

  70. 70.

    Ribli D, Horváth A, Unger Z, Pollner P, Csabai I (2017) Detecting and classifying lesions in mammograms with deep learning. Sci Rep 8(1):1–7.

    Google Scholar 

  71. 71.

    Shen D, Wu G, Suk H (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19(1):221–248.

    Article  Google Scholar 

  72. 72.

    Strand F, Humphreys K, Cheddad A, Tornberg S, Azavedo E, Shepherd JA, Hall P, Czene K (2016) Novel mammographic image features differentiate between interval and screen-detected breast cancer: a case-case study. Breast Cancer Res 18(1):100.

    Article  Google Scholar 

  73. 73.

    Suckling J (1994) The mammographic image analysis society digital mammogram database. Digit Mammo 375–386

  74. 74.

    Surajudeen A, Reyer Z (2017) Breast density segmentation based on fusion of super pixels and watershed transform. Int J Comput Appl 161(12):1–7.

    Google Scholar 

  75. 75.

    Tzikopoulos S, Mavroforakis M, Georgiou HV, Dimitropoulos N, Theodoridis S (2011) A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Comput Methods Prog Biomed 102(1):47–63.

    Article  Google Scholar 

  76. 76.

    Virmani J, Dey N, Kumar V et al (2016) Pca-pnn and pca-svm based cad systems for breast density classification, Springer.

  77. 77.

    Wang Y, Jiao J (2011) Detection of regions of interest from breast tumorul trasound images using improved pcnn. Opt.Precis.Eng 19(6).

  78. 78.

    Wang J, Kato F, Yamashita H, Baba M, Cui Y, Li R, et al. (2017) Automatic estimation of volumetric breast density using artificial neural network-based calibration of full-field digital mammography: feasibility on japanese women with and without breast cancer. J Digit Imaging 30(2):215–227.

    Article  Google Scholar 

  79. 79.

    Williams CKI (2003) Learning with kernels: Support vector machines, regularization, optimization, and beyond. J Am Stat Assoc 98(462):489–489.

    Google Scholar 

  80. 80.

    Wolfe JN (1976) Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 37:2486–2492.;2-8

    Article  Google Scholar 

  81. 81.

    Yang Z, Lian J, Li S, Guo Y, Qi Y, Ma Y (2018) Heterogeneous spcnn and its application in image segmentation. Neurocomputing 285 (3):196–203.

    Article  Google Scholar 

  82. 82.

    Zhan K, Shi J, Wang H, Xie Y, Li Q (2017) Computational mechanisms of pulse-coupled neural networks: a comprehensive review. Arch Comput Methods Eng 24(3):573–588.

    MathSciNet  MATH  Article  Google Scholar 

  83. 83.

    Zhan K, Zhang H, Ma Y (2009) New spiking cortical model for invariant texture retrieval and image processing. IEEE Trans Neussral Netw 20 (12):1980–1986.

    Article  Google Scholar 

Download references


This work is jointly supported by the Natural Science Foundation of Gansu Province (No.18JR3RA288) and the Fundamental Research Funds for the Central Universities of China (No.lzujbky-2017-it72 and No.lzujbky-2018-it61).

Author information



Corresponding author

Correspondence to Yide Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Yang, Z., Lei, J. et al. Morph_SPCNN model and its application in breast density segmentation. Multimed Tools Appl (2020).

Download citation


  • Breast density
  • Image segmentation
  • Morph_SPCNN
  • SVM