Skip to main content
Log in

Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Diseases of the eye require manual segmentation and examination of the optic disc by ophthalmologists. Though, image segmentation using deep learning techniques is achieving remarkable results, it leverages on large-scale labeled datasets. But, in the field of medical imaging, it is challenging to acquire large labeled datasets. Hence, this article proposes a novel deep learning model to automatically segment the optic disc in retinal fundus images by using the concepts of semi-supervised learning and transfer learning. Initially, a convolutional autoencoder (CAE) is trained to automatically learn features from a large number of unlabeled fundus images available from the Kaggle’s diabetic retinopathy (DR) dataset. The autoencoder (AE) learns the features from the unlabeled images by reconstructing the input images and becomes a pre-trained network (model). After this, the pre-trained autoencoder network is converted into a segmentation network. Later, using transfer learning, the segmentation network is trained with retinal fundus images along with their corresponding optic disc ground truth images from the DRISHTI GS1 and RIM-ONE datasets. The trained segmentation network is then tested on retinal fundus images from the test set of DRISHTI GS1 and RIM-ONE datasets. The experimental results show that the proposed method performs on par with the state-of-the-art methods achieving a 0.967 and 0.902 dice score coefficient on the test set of the DRISHTI GS1 and RIM-ONE datasets respectively. The proposed method also shows that transfer learning and semi-supervised learning overcomes the barrier imposed by the large labeled dataset. The proposed segmentation model can be used in automatic retinal image processing systems for diagnosing diseases of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://www.glaucoma.org/glaucoma/optic-nerve-cupping.php

  2. https://github.com/keras-team/keras/

References

  1. Abadi M, Agarwal A, Barham P, et al. (2015) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv:1603.04467

  2. Al-Bander B, Williams B, Al-Nuaimy W, Al-Taee M, Pratt H, Zheng Y (2018) Dense fully convolutional segmentation of the optic disc and cup in colour fundus for glaucoma diagnosis. Symmetry 10(4):87

    Article  Google Scholar 

  3. Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V (2015) Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J Ophthalmol 2015(180972):28. https://doi.org/10.1155/2015/180972

    Article  Google Scholar 

  4. Almazroa A, Alodhayb S, Osman E, Ramadan E, Hummadi M, Dlaim M, Alkatee M, Raahemifar K, Lakshminarayanan V (2017) Agreement among ophthalmologists in marking the optic disc and optic cup in fundus images. Int Ophthalmol 37(3):701–717. https://doi.org/10.1007/s10792-016-0329-x

    Article  Google Scholar 

  5. Almazroa A, Sun W, Alodhay S, Raahemifar K, Lakshminarayanan V (2017) Optic disc segmentation for glaucoma screening system using fundus images. Clin Ophthalmol 2017(11):2017–2029. https://doi.org/10.2147/OPTH.S140061

    Article  Google Scholar 

  6. Almubarak H, Bazi Y, Alajlan N (2020) Two-stage mask-rcnn approach for detecting and segmenting the optic nerve head, optic disc, and optic cup in fundus images. Appl Sci 10(11):3833. https://doi.org/10.3390/app10113833

    Article  Google Scholar 

  7. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  Google Scholar 

  8. Bajwa MN, Malik MI, Siddiqui SA, Dengel A, Shafait F, Neumeier W, Ahmed S (2019) Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inform Decis Mak 19(136). https://doi.org/10.1186/s12911-019-0842-8

  9. Biswas B, Ghosh SK, Ghosh A (2020) DVAE: deep variational auto-encoders for denoising retinal fundus image. Springer, Singapore, pp 257–273

    Google Scholar 

  10. Chu J, Guo Z, Leng L (2018) Object detection based on multi-layer convolution feature fusion and online hard example mining. IEEE Access 6:19959–19967

    Article  Google Scholar 

  11. Dehghani A, Moghaddam HA, Moin MS (2012) Optic disc localization in retinal images using histogram matching. EURASIP Journal on Image and Video Processing 2012(1):19. https://doi.org/10.1186/1687-5281-2012-19

    Article  Google Scholar 

  12. Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C (2016) The importance of skip connections in biomedical image segmentation. https://doi.org/10.1007/978-3-319-46976-8_19

  13. Edupuganti V, Chawla A, Kale A (2018) Automatic optic disk and cup segmentation of fundus images using deep learning. In: 25th IEEE international conference on image processing (ICIP). https://doi.org/10.1109/ICIP.2018.8451753, pp 2227–2231

  14. EGS (2017) European glaucoma society terminology and guidelines for glaucoma, 4th edition - part 1. Br J Ophthalmol 101(4):1–72

    Article  Google Scholar 

  15. Fraga A, Barreira N, Ortega M, Penedo MG, Carreira MJ (2012) Precise segmentation of the optic disc in retinal fundus images. In: Moreno-Díaz R, Pichler F, Quesada-Arencibia A (eds) Computer aided systems theory – EUROCAST, vol 2011. Springer, Berlin, pp 584–591

  16. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37:1597–1605

    Article  Google Scholar 

  17. Fu H, Cheng J, Xu Y, Zhang C, Wong D, Liu J, Cao X (2018) Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imaging 37(11):2493–2501

    Article  Google Scholar 

  18. Fumero F, Alayon S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) Rim-one: an open retinal image database for optic nerve evaluation. In: 2011 24th international symposium on computer-based medical systems (CBMS), pp 1–6

  19. Ghosh SK, Biswas B, Ghosh A (2019) SDCA: a novel stack deep convolutional autoencoder – an application on retinal image denoising. IET Image Process 13(14):2778–2789

    Article  Google Scholar 

  20. Girshick R (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision (ICCV), pp 1440–1448

  21. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE conference on computer vision and pattern recognition, pp 580–587

  22. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Teh Y W, Titterington M (eds) Proceedings of the thirteenth international conference on artificial intelligence and statistics, PMLR, Chia Laguna Resort, Sardinia, Italy, proceedings of machine learning research, vol 9, pp 249–256

  23. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y (2014) Generative adversarial nets. In: NIPS

  24. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: 2017 IEEE international conference on computer vision (ICCV), pp 2980–2988

  25. Kaggle (2015) Diabetic retinopathy detection. https://www.kaggle.com/c/diabetic-retinopathy-detection. Accessed 27 Aug 2020

  26. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification with convolutional neural networks. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition, IEEE computer society, Washington, DC, USA, CVPR ’14, pp 1725–1732. https://doi.org/10.1109/CVPR.2014.223

  27. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. arXiv:1412.6980

  28. Lahiri A, Roy AG, Sheet D, Biswas PK (2016) Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1340–1343

  29. Laves M, Ihler S, Kahrs LA, Ortmaier T (2019) Retinal OCT disease classification with variational autoencoder regularization. arXiv:1904.00790

  30. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  31. Leng L, Yang Z, Kim C, Zhang Y (2020) A light-weight practical framework for feces detection and trait recognition. Sensors 20(9):2644

    Article  Google Scholar 

  32. Li Z, Yang W, Peng S, Liu F (2020) A survey of convolutional neural networks: analysis, applications, and prospects. arXiv:2004.02806

  33. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: Computer vision - ECCV, vol 2014. Springer International Publishing, Cham, pp 740–755

  34. MacGillivray TJ, Trucco E, Cameron JR, Dhillon B, Houston JG, van Beek EJR (2014) Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br J Radiol 87(1040)

  35. Maji D, Santara A, Ghosh S, Sheet D, Mitra P (2015) Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. In: Annual international conference of the IEEE engineering in medicine and biology society, IEEE, pp 3029–3032

  36. Maninis K, Pont-Tuset J, Arbeláez P, Gool LV (2016) Deep retinal image understanding. In: Medical image computing and computer-assisted intervention (MICCAI

  37. Manju K, Sabeenian RS, Surendar A (2017) A review on optic disc and cup segmentation. Biomedical and Pharmacology Journal 10(1):373–379

    Article  Google Scholar 

  38. Pal A, Moorthy MR, Shahina A (2018) G-eyenet: a convolutional autoencoding classifier framework for the detection of glaucoma from retinal fundus images. In: 2018 25th IEEE international conference on image processing (ICIP), pp 2775–2779

  39. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  40. Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu ML, Chen SC, Iyengar SS (2018) A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv 51(5):92:1–92:36

    Google Scholar 

  41. Prakash VJ, Nithya LM (2014) A survey on semi-supervised learning techniques. arXiv:1402.4645

  42. Quigley H, Broman A (2006) The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Opthalmology 90(3):262–267. https://doi.org/10.1136/bjo.2005.081224

    Article  Google Scholar 

  43. Raghavendra U, Gudigar A, Bhandary SV, Rao TN, Ciaccio EJ, Acharya UR (2019) A two layer sparse autoencoder for glaucoma identification with fundus images. J Med Syst 43(9):299

    Article  Google Scholar 

  44. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  45. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), Springer, LNCS, vol 9351, pp 234–241

  46. Sevastopolsky A (2017) Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network. Pattern Recogn Image Anal 27:618–624

    Article  Google Scholar 

  47. Shankaranarayana S, Ram K, Mitra K, Sivaprakasam M (2019) Fully convolutional networks for monocular retinal depth estimation and optic disc-cup segmentation. IEEE Journal of Biomedical and Health Informatics 23 (4):1417–1426

    Article  Google Scholar 

  48. Shankaranarayana SM, Ram K, Mitra K, Sivaprakasam M (2017) Joint optic disc and cup segmentation using fully convolutional and adversarial networks. In: Fetal, infant and ophthalmic medical image analysis. Springer International Publishing, Cham, pp 168–176

  49. Shelhamer E, Long J, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3431–3440

  50. Singh VK, Rashwan HA, Akram F, Pandey N, Sarker MMK, Saleh A, Abdulwahab S, Maaroof N, Romani S, Puig D (2018) Retinal optic disc segmentation using conditional generative adversarial network. arXiv:1806.03905

  51. Sivaswamy J, Krishnadas S, Chakravarty A, Joshi1 GD, Ujjwal Syed TA (2015) A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomedical Imaging Data Papers 2(1):1004

  52. Son J, Park SJ, Jung KH (2018) Towards accurate segmentation of retinal vessels and the optic disc in fundoscopic images with generative adversarial networks. J Digit Imaging 32. https://doi.org/10.1007/s10278-018-0126-3

  53. Sun X, Xu Y, Zhao W, You T, Liu J (2018) Optic disc segmentation from retinal fundus images via deep object detection networks. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5954–5957

  54. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. arXiv:1808.01974

  55. Tan JH, Acharya UR, Bhandary SV, Chua KC, Sivaprasad S (2017) Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J Comput Sci 20:70–79

    Article  Google Scholar 

  56. Thakur N, Juneja M (2018) Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomedical Signal Processing and Control 42:162–189. https://doi.org/10.1016/j.bspc.2018.01.014

    Article  Google Scholar 

  57. Tjandrasa H, Wijayanti A, Suciati N (2012) Segmentation of the retinal optic nerve head using hough transform and active contour models. TELKOMNIKA (Telecommunication, Computing, Electronics and Control) 10

  58. Wang C, Kaba D, Li Y (2015) Level set segmentation of optic discs from retinal images. J Med Bioeng 4(3):213–220

    Google Scholar 

  59. Wang L, Liu H, Lu Y, Chen H, Zhang J, Pu J (2019) A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomedical Signal Processing and Control 51:82–89. https://doi.org/10.1016/j.bspc.2019.01.022

    Article  Google Scholar 

  60. Wang S, Yu L, Yang X, Fu CW, Heng PA (2019) Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans Med Imaging 38(11):2485–2495. https://doi.org/10.1109/TMI.2019.2899910

    Article  Google Scholar 

  61. Welfer D, Scharcanski J, Kitamura CM, Pizzol MMD, Ludwig LW, Marinho DR (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40(2):124–137

    Article  Google Scholar 

  62. Welfer D, Scharcanski J, Marinho DR (2013) A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recogn Lett 34(5):476–485. https://doi.org/10.1016/j.patrec.2012.12.011

    Article  Google Scholar 

  63. Yamashita R, Nishio M, Do RKG, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights into Imaging 9:611–629. https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  64. Yang Z, Leng L, Kim BG (2019) Stoolnet for color classification of stool medical images. Electronics 8(12):1464

    Article  Google Scholar 

  65. Yu H, Barriga ES, Agurto C, Echegaray S, Pattichis MS, Bauman W, Soliz P (2012) Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans Inf Technol Biomed 16(4):644–657. https://doi.org/10.1109/TITB.2012.2198668

    Article  Google Scholar 

  66. Yu S, Xiao D, Frost S, Kanagasingam Y (2019) Robust optic disc and cup segmentation with deep learning for glaucoma detection. Comput Med Imaging Graph 74:61–71

    Article  Google Scholar 

  67. Zhang Y, Chu J, Leng L, Miao J (2020) Mask-Refined R-CNN: a network for refining object details in instance segmentation. Sensors 20(4):1010

    Article  Google Scholar 

  68. Zhu X, Rangayyan RM (2008) Detection of the optic disc in images of the retina using the hough transform. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp 3546–3549, DOI https://doi.org/10.1109/IEMBS.2008.4649971, (to appear in print)

  69. Zilly J, Buhmann JM, Mahapatra D (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41. https://doi.org/10.1016/j.compmedimag.2016.07.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Arul Jothi J..

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengani, S., J., A.A.J. & S., V. Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning. Multimed Tools Appl 80, 3443–3468 (2021). https://doi.org/10.1007/s11042-020-09778-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09778-6

Keywords

Navigation