Skip to main content
Log in

A dynamic inverse distance weighting-based local face descriptor

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel high-performance dynamic inverse distance weighting based local descriptor (DIDWLD) for facial recognition. Studies proposed thus far have focused on finding local descriptors that can represent the texture of the face best. However, the robustness of the descriptors against rotational variances and noise affects have been largely omitted. Thus, this study does not only concern with proposing a high-discriminative descriptor, but also a robust one against rotational changes and noise affects. DIDWLD mainly basis on Inverse Distance Weighting (IDW). That is, for each pixel in the image, a new descriptive value is calculated, taking into account the intensity values of the neighboring pixels and their distance to the reference pixels. A dynamic distance-decay parameter is applied throughout the image rather than keeping it uniform as done in ordinary IDW. The calculated descriptor is independent of the changes in the rotation. Because, when calculating the descriptor, the intensity values of the surrounding pixels with their distances to the reference pixel are taken into consideration, yet their directional relation to the reference pixel is ignored. Furthermore, when a pixel is suffered to noise, inherently, its neighboring pixels are also affected. Hence, by taking into account the effect of the surrounding pixels and also the original intensity value of the pixel, the degrading impact of noise on recognition performance is mitigated. The results of extensive simulations show the remarkable and competitive performance of the proposed method regarding recognition accuracy, and robustness against rotational variances and, noise effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. (2000) The database of faces: Cambridge University Computer Laboratory, online

  2. Ahonen T, Hadid A, Pietikainen M (2004) Face recognition with local binary patterns. Proceedings of the 8th European Conference on Computer Vision, pp 469–481

  3. Bailey TC, Gatrell AC (1995) Interactive Spatial Analysis, Longman, Essex

  4. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisher-faces: Recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Google Scholar 

  5. Cevik N, Cevik T, Gurhanli A. Novel multispectral face descriptor using orthogonal walsh codes. IET Image Proc. https://doi.org/10.1049/iet-ipr.2018.6423, 1–82019

  6. Chakraborty S, Singh SK, Chakraborty P (2017) Local directional gradient pattern: A local descriptor for face recognition. Multimedia Tools Appl 76:1201–1216

    Google Scholar 

  7. Comon P (1994) Independent component analysis - a new concept? Sig Process 36:287–314

    MATH  Google Scholar 

  8. Dahmane M, Meunier J (2011) Emotion recognition using dynamic gridbased HoG features. Proceedings of the IEEE Int. Conf. Autom. Face Gesture Recognit. Workshops (FG), pp 884–888

  9. Ding C, Choi J, Tao D, Davis LS (2016) Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition. IEEE Trans Pattern Anal Mach Intell 38(3):518–531

    Google Scholar 

  10. Doshi N, Schaefer G (2012) A comprehensive bench-mark of local binary pattern algorithms for texture retrieval. Proceedings of the International Conference on Pattern Recognition (ICPR), pp 2760–2763

  11. Fan KC, Hung TY (2014) A novel local pattern descriptor - local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23(7):2877–2891

    MathSciNet  MATH  Google Scholar 

  12. Fernández A, Álvarez M, Bianconi F (2013) Texture description through histograms of equivalent patterns. J Math Imaging Vis 45(1):76–102

    MathSciNet  MATH  Google Scholar 

  13. Gao W, Cao B, Shan S, Chen X, Zhou D, Zhang X, Zhao D (2008) The CAS-PEAL large-scale chinese face database and baseline evaluations. IEEE Trans Syst Man Cybern (Part A) 38(1):149–161

    Google Scholar 

  14. Goovaerts P (n.d.) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

  15. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacian faces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

  16. He X, Cai D, Yan S, Zhang H (2005) Neighborhood preserving embedding. Proc IEEE Int Conf Comput Vis 2005:1208–1213

  17. Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern—Part C: Appl Rev 41(6):765–781

    Google Scholar 

  18. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  19. Jabid T, Kabir MH, Chae O (2010) Robust facial expression recognition based on local directional pattern. ETRI J 32(5):784–794

    Google Scholar 

  20. Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon trans-form orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008

    Google Scholar 

  21. Jafri R, Arabnia HR (2009) A survey of face recognition techniques. J Inform Process Syst 5(2):41–68

    Google Scholar 

  22. Jain AK, Ross A (2008) Introduction to Biometrics. In: Jain AK, Flynn; Ross A (eds) Handbook of Biometrics. Springer, Berlin, pp 1–22

  23. Jain A, Hong L, Pankanti S (2000) Biometric Identification. Commun ACM 43(2):91–98

    Google Scholar 

  24. Jutten C, Herault J (1991) Blind separation of sources, Part I: An adaptive algorithm based on neuromimatic architecture. Sig Process 24(1):1–10

    MATH  Google Scholar 

  25. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Google Scholar 

  26. Leng L, Zhang J, Khan MK, Chen X, Alghathbar K (2010) Dynamic weighted discrimination power analysis: A novel approach for face and palmprint recognition in DCT domain. Int J Phys Sci 5(17):2543–2554

    Google Scholar 

  27. Leng L, Zhang J, Xu J, Khan MK, Alghathbar K (2010) Dynamic weighted discrimination power analysis in DCT domain for face and palmprint recognition. Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea

  28. Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: A review. Environ Model Softw 53:173–189

    Google Scholar 

  29. Libor S (2000) Face Recognition Data

  30. Lin J, Chiu CT (2017) Low-complexity face recognition using contour-based binary descriptor. IET Image Proc 11(12):1179–1187

    Google Scholar 

  31. Liu L, Fieguth P, Zhao G, Pietikainen M, Hu D (2016) Extended local binary patterns for face recognition. Inf Sci 358–359(1):56–72

    Google Scholar 

  32. Liu L, Fieguth P, Guo Y, Wang X, Pietikainen M (2017) Local binary features for texture classification: Taxonomy and experimental study. Pattern Recogn 62:135–160

    Google Scholar 

  33. Lloyd CD (n.d.) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Hydrology 308:128–150

  34. Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34(9):1044–1055

    Google Scholar 

  35. Lyons MJ, Akemastu S, Kamachi M, Gyoba J (1998) Coding Facial expressions with gabor wavelets. 3rd IEEE International Conference on Automatic Face and Gesture Recognition, pp 200–205

  36. Melendez J, Garcia MA, Puig D (2008) Efficient distance-based per-pixel texture classification with Gabor wavelet filters. Pattern Anal Appl 11(3):365–372

    MathSciNet  Google Scholar 

  37. Mika S, Ratsch G, Weston J, Scholkopf B, Müller K-R (1999) Fisher discriminant analysis with kernels. Proceedings of the IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing, Madison, WI, USA, pp 41–48

  38. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    MathSciNet  MATH  Google Scholar 

  39. Nanni L, Lumini A, Brahnam S (2012) Survey on lbp based texture descriptors for image classification. Ex-pert Syst Appl 39(3):3634–3641

    Google Scholar 

  40. Nanni L, Brahnam S, Ghidoni S, Menegatti E, Barrier T (2013) Different approaches for extracting information from the co-occurrence matrix. PLoS One 8(12):1–9

    Google Scholar 

  41. Nisenson M, Yariv I, El-Yaniv R, Meir R (2003) Towards Behaviometric Security Systems: Learning to Identify a Typist. Lecture Notes Comput Sci :363–374

  42. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59

    Google Scholar 

  43. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Patterns Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  44. Ou W, You X, Tao D, Zhang P, Tang Y, Zhu Z (2014) Robust face recognition via occlusion dictionary learning. Pattern Recogn 47:1159–1572

    Google Scholar 

  45. Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns. Springer, Berlin

  46. Rivera AR, Chae O (2015) Spatiotemporal directional number transitional graph for dynamic texture recognition. IEEE Trans Pattern Anal Mach Intell 37(10):2146–2152

    Google Scholar 

  47. Rivera AR, Castillo R, Chae O (2013) Local directional number pattern for face analysis: Face and expression recognition. IEEE Trans Image Process 22(5):1740–1752

    MathSciNet  MATH  Google Scholar 

  48. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(22):2323–2326

    Google Scholar 

  49. Schölkopf B, Smola A, Müller KR (1999) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319

    Google Scholar 

  50. Su Y, Liu Z, Wang M (2018) Sparse representation-based face recognition against expression and illumination. IET Image Proc 12(5):826–832

    Google Scholar 

  51. Takallou HM, Kasaei S (2014) Multiview face recognition based on multilinear decomposition and pose manifold. IET Image Proc 8(5):300–309

    Google Scholar 

  52. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    MathSciNet  MATH  Google Scholar 

  53. Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(22):2319–2323

    Google Scholar 

  54. Tseng S (2003) Comparison of holistic and feature based approaches to face recognition. MSc Thesis, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia

  55. Turk MA, Pentland AP (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Google Scholar 

  56. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047

    Google Scholar 

  57. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vision 57:137–154

    Google Scholar 

  58. Wang X, Tang X (2004) A unified framework for subspace face recognition. IEEE Trans Pattern Anal Mach Intell 26(9):1222–1228

    Google Scholar 

  59. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Google Scholar 

  60. Yin QB, Kim JN (2008) Rotation-invariant texture classification using circular Gabor wavelets based local and global features. Chin J Electron 17(4):646–648

    Google Scholar 

  61. Zhang WC, Shan SG, Gao W, Zhang HM (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. Proceedings of the 10th IEEE International Conference and Computer Vision, pp 786–791

  62. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68

    MathSciNet  Google Scholar 

  63. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–543

    MathSciNet  MATH  Google Scholar 

  64. Zhang P, You X, Ou W, Philip Chen CL, Cheung Y (2016) Sparse discriminative multi-manifold embedding for one-sample face identification. Pattern Recogn 52:249–259

    Google Scholar 

  65. Zhang H, Qu Z, Yuan L, Li G (2017) A face recognition method based on LBP feature for CNN. Proceedings of the IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China

  66. Zhao X, Wei C (2017) A real-time face recognition system based on the improved LBPH algorithm. Proceedings of the IEEE 2nd International Conference on Signal and Processing I (ICSIP), Singapore, Singapore

  67. Zhou Q, Zhang C, Yu W, Fan Y, Zhu H, Wu X, Ou W, Zhu W, Latecki LJ (2018) Face recognition via fast dense correspondence. Multimedia Tools Appl 77:10501–10519

    Google Scholar 

  68. Zhu Z, You X, Philip Chen CL, Tao D, Ou W, Jiang X, Zou J (2015) An adaptive hybrid pattern for noise-robust texture analysis. Pattern Recogn 48:2592–2608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazife Cevik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cevik, N. A dynamic inverse distance weighting-based local face descriptor. Multimed Tools Appl 79, 31087–31102 (2020). https://doi.org/10.1007/s11042-020-09581-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09581-3

Keywords

Navigation