Skip to main content
Log in

Extremely adaptive image retrieval scheme employing an optimized wavelet technique intended for characterization maps

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The demand for adaptive image retrieval is still an active research area, particularly in a dynamic environment. Erstwhile retrieval schemes ensure adaptivity by tuning the same image basis with wavelet transforms, in accordance with user’s significance. To enhance adaptivity and improve the retrieval performance, an Extremely Adaptive Image Retrieval (EAIR) scheme is presented that associates each image with different wavelet basis. This objective is achieved by building Characterization maps from wavelet coefficients of images (query and target) using higher order standardized moments of the Gamma function. The resulting maps are approximated by Volterra Series and later, mathematically programmed by Integral Global Optimization (IGO) algorithm for wavelet adaptation. Finally, the best wavelet filter for each query image is fitted using the Multivariate Adaptive Regression Splines (MARS). Characterization Maps rendered by EAIR achieves 60% reduction in Relative Approximation Error (RAE) with 11% decrease in query time observed under diverse dataset. Also, relative Precision-Recall (P-R), Precision at 5 (P5) analyses reveals a significant retrieval improvement of 9.52%, 1.35%, 1.12%, 8.07% by EAIR on Caltech, Messidor, AT&T, Vistex respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ashraf R, Ahmed M, Jabbar S, Khalid S, Ahmad A, Din S, Jeon G (2018) Content based image retrieval by using color descriptor and discrete wavelet transform. J Med Syst 42(3):44

    Google Scholar 

  2. Bay H, Tuytelaars T, van Gool L (2008) SURF. Speeded up robust features Comput Vis Image Und 110(3):346–359

    Google Scholar 

  3. Boyd S, Chua LO (1985) Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans Circuits Syst 32(11):1150–1161

    MathSciNet  MATH  Google Scholar 

  4. Cherry JA (1994) Distortion analysis of weakly nonlinear filters using Volterra series 16–29

  5. Claypoole RL, Baraniuk RG, Nowak RD (1998) Adaptive wavelet transforms via lifting. IEEE Int Conf Acoust Speech Signal Process 1513–1516

  6. Cui H, Wang C, Zheng Q (2006) Optimality conditions and algorithms for integral global minimization. Comput Math Appl 52:55–64

    MathSciNet  MATH  Google Scholar 

  7. Dewson T, Irving AD, Terdik G (1997) Estimating of Volterra Kernels in case of moment hierarchy and orthogonal representation. Comput Math Appl 33(4):5–14

    MathSciNet  MATH  Google Scholar 

  8. Fadaei, S, Amirfattahi R, Ahmadzadeh MR (2016) New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features. IET Image Process, 11(2), 89–98

    Google Scholar 

  9. Franz MO, Scholkopf B (2006) A unifying view of wiener and Volterra theory and polynomial kernel regression. J Neural Comput 18(12):3097–3118

    MathSciNet  MATH  Google Scholar 

  10. Friedman JH (1990) Multivariate adaptive regression splines SLAC PUB-4960 Rev Tech Report 102 Rev

  11. Galperin EA, Zheng Q (1991) Integral global optimization method for non-linear games. Comput Math Appl 21(6/7):145–159

    Article  MathSciNet  MATH  Google Scholar 

  12. Heijmans HJAM, Piella G, Pesquet-Popescu B (2004) Adaptive wavelets for image compression using update lifting: Quantization and error analysis. Int J Wavelets Multiresolut Inf Process 4(1):41–63

    Article  MathSciNet  MATH  Google Scholar 

  13. Jekabsons G (2011) ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, available at http://www.cs.rtu.lv/jekabsons/

  14. Kundu MK, Chowdhury M, Bulò SR (2015) A graph-based relevance feedback mechanism in content-based image retrieval. Knowl.-Based Syst. 73:254–264

    Article  Google Scholar 

  15. Lowe DG (1999) Object recognition from local scale-invariant features. Proc Int Conf Comput Vision 2:1150–1157

    Article  Google Scholar 

  16. Munoz J, Felicísimo AM (2004) Comparison of statistical methods commonly used in Predictive Modeling. J Veg Sci 15:285–292

    Article  Google Scholar 

  17. Nadarajah S (2005) A generalized normal distribution. J Appl Stat 32(7):685–694

    Article  MathSciNet  MATH  Google Scholar 

  18. Natsev A, Rastogi R, Shim K (2004) Walrus: A similarity retrieval algorithm for image databases. IEEE Trans Knowl Data Eng 16:301–316

    Article  Google Scholar 

  19. Peng YB, Xong J (2002) Invariance analysis of improved Zernike Moments. J Opt A Pure Appl Opt 4:606–614

    Article  Google Scholar 

  20. Piella G, Popescu PB, Heijmans HJAM, Pau G (2006) Combining Seminorms in Adaptive Lifting Schemes and Applications to Image Analysis and Compression. J Math Imaging Vision 25(2):203–226

    MathSciNet  Google Scholar 

  21. Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2010) Wavelet optimization for content-based image retrieval in medical databases. Med Image Anal 14(2):227–241

    MATH  Google Scholar 

  22. Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2010) Adaptive Non Separable Wavelet Transform via Lifting and its Application to Content-Based Image Retrieval. IEEE Trans Image Process 19(1):25–35

    MathSciNet  MATH  Google Scholar 

  23. Quellec G, Lamard M, Cazuguel G, Cochener B, Roux C (2012) Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans Image Process 21(4):1613–1623

    MathSciNet  MATH  Google Scholar 

  24. Sandberg IW (1985) Doubly finite Volterra series approximation

  25. Sandberg IW (1992) Uniform Approximation with Doubly Finite Volterra Series. IEEE Trans Signal Process 40(6):1438–1442

    MATH  Google Scholar 

  26. Sathiamoorthy S, Natarajan M (2020) An efficient content based image retrieval using enhanced multi-trend structure descriptor. SN Appl Sci 335

  27. Smeulders WM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Google Scholar 

  28. Srivastava P, Khare A (2017) Integration of wavelet transform, local binary patterns and moments for content-based image retrieval. J Visual Commun Image Represent 42:78–103

    Google Scholar 

  29. Sweldens W (1996) The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3(2):186–200

    MathSciNet  MATH  Google Scholar 

  30. Tu R, Zheng Q (1993) Integral global optimization method in statistical applications. Comput Math Appl 25(10/11):9–17

    MathSciNet  MATH  Google Scholar 

  31. Usevitch BE (2001) A tutorial on modern lossy wavelet image compression: foundations of JPEG 2000. IEEE Signal Process Mag 18(5):22–35

    Article  Google Scholar 

  32. van de Wouwer G, Scheunders P, van Dyck D (1999) Statistical texture characterization from discrete wavelet representations. IEEE Trans Image Process 8(4):592–598

    Article  Google Scholar 

  33. Varish N, Pradhan J, Pal AK (2017) Image retrieval based on non-uniform bins of color histogram and dual tree complex wavelet transform. Multimed Tools Appl 76:15885–15921

    Article  Google Scholar 

  34. Vrankic M, Sersic D (2004) Adaptation in the Quincunx wavelet filter bank with applications in Image Denoising in Procs of the Int. Workshop on Spectral Methods Multirate Signal Processing 245–232

  35. Yang GH, Sloan M, Wang J (2016) Dynamic Information retrieval modeling. Morgan Claypool 144–172

  36. Yerlikaya F (2008) A New contribution to nonlinear robust regression and classification with MARS and its applications to data. Mining for Quality Control in manufacturing: thesis

  37. Zafar B, Ashraf R, Ali N, Ahmed M, Jabbar S, Naseer K, Ahmad A, Jeon G (2018) Intelligent image classification-based on spatial weighted histograms of concentric circles. Comput Sci Inf Syst 15(3):615–633

    Article  Google Scholar 

  38. Zhao M, Zhang H, Sun J (2016) A novel image retrieval method based on multi-trend structure descriptor. J Vis Commun Image Represent 38:73–81

    Article  Google Scholar 

  39. Zheng Q (1991) Robust analysis and global optimization. Comput Math Appl 21(6/7):17–24

    Article  MathSciNet  MATH  Google Scholar 

  40. Zheng Q, Zhang L (1999) Global minimization of constrained problems with discontinuous penalty functions. Comput Math Appl 37:41–58

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sudhakar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnanasivam, P., Sudhakar, M.S. Extremely adaptive image retrieval scheme employing an optimized wavelet technique intended for characterization maps. Multimed Tools Appl 79, 30419–30438 (2020). https://doi.org/10.1007/s11042-020-09515-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09515-z

Keywords

Navigation