Skip to main content
Log in

Online information leaker identification scheme for secure data sharing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel scheme for the leaker identification that deals with the dynamic scenario by handling the requests of the users in an online custom. A distribution strategy is introduced having less risk associated with exposing the data and furthermore improves the likelihood of identifying the leaker when the information is revealed by the malicious user. The observed results signify an improvement of up to 41%, 368%, and 318% for average probability, average success rate, and detection rate respectively compared to the prior work. Also, the proposed framework significantly minimizes the possibility of data leakage up to 88% and synchronously achieves a 100% efficacy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Al-Fedaghi S, Behbehani M (2018) Thinging machine applied to information leakage. Int J Adv Comput Sci Appl (IJACSA) 9(9):101–110

    Google Scholar 

  2. Ali M, Dhamotharan R, Khan E, Khan SU, Vasilakos AV, Li K, Zomaya AY (2017) Sedasc: Secure data sharing in clouds. IEEE Syst J 11(2):395–404

    Article  Google Scholar 

  3. Assale M, Dui LG, Cina A, Seveso A, Cabitza F (2019) The revival of the notes field: Leveraging the unstructured content in electronic health records. Front Med 6:1–23

    Article  Google Scholar 

  4. Backes M, Grimm N, Kate A (2016) Data lineage in malicious environments. IEEE Trans Depend Sec Comput 13(2):178–191

    Article  Google Scholar 

  5. Bertino E (2013) Data security–challenges and research opportunities. In: Workshop on secure data management. Springer, pp 9–13

  6. Blesswin AJ, Raj C, Sukumaran R, Mary GS (2020) Enhanced semantic visual secret sharing scheme for the secure image communication. Multimed Tools Appl 79:17057–17079

    Article  Google Scholar 

  7. Cheng L, Liu F, Yao D (2017) Enterprise data breach: causes, challenges, prevention, and future directions. Wiley Interdiscip Rev Data Min Knowl Discov 7(5):e1211. https://doi.org/10.1002/widm.1211

    Article  Google Scholar 

  8. Fang Y, Guo Y, Huang C, Liu L (2019) Analyzing and identifying data breaches in underground forums. IEEE Access 7:48770–48777

    Article  Google Scholar 

  9. Guevara C, Santos M, López V. (2017) Data leakage detection algorithm based on task sequences and probabilities. Knowl-Based Syst 120:236–246

    Article  Google Scholar 

  10. Gupta I, Singh A (2018) A probabilistic approach for guilty agent detection using bigraph after distribution of sample data. Procedia Comput Sci 125:662–668. https://doi.org/10.1016/j.procs.2017.12.085. http://www.sciencedirect.com/science/article/pii/S1877050917328533

    Article  Google Scholar 

  11. Gupta I, Singh A (2019) Dynamic threshold based information leaker identification scheme. Inf Process Lett 147:69–73

    Article  MathSciNet  Google Scholar 

  12. Gupta I, Singh N, Singh A (2019) Layer-based privacy and security architecture for cloud data sharing. J Commun Softw Syst (JCOMSS) 15(2)

  13. Gupta I, Singh A (2020) A framework for malicious agent detection in cloud computing environment. Int J Adv Sci Technol (IJAST) 135:49–62

    Article  Google Scholar 

  14. Gupta I, Singh A (2020) An integrated approach for data leaker detection in cloud environment. Journal of Information Science and Engineering

  15. Harel A, Shabtai A, Rokach L, Elovici Y (2012) M-score: a misuseability weight measure. IEEE Trans Depend Sec Comput 9 (3):414–428. https://doi.org/10.1109/TDSC.2012.17

    Article  Google Scholar 

  16. IBM, Ponemon: Cost of a data breach study: Global overview (2018). https://www.nascio.org/Portals/0/Publications/Webinars/Ponemon=2018-09-18-152028-060

  17. Jero SE, Ramu P (2016) Curvelets-based ecg steganography for data security. Electron Lett 52(4):283–285. https://doi.org/10.1049/el.2015.3218

    Article  Google Scholar 

  18. Kieseberg P, Schantl J, Fruehwirt P, Weippl E, Holzinger A (2015) Witnesses for the doctor in the loop. In: international conference on brain informatics and health (BIH), vol 9250. Lecture Notes in Computer Science, Springer, Cham, pp 369–378

  19. Kieseberg P, Malle B, Fruehwirt P, Weippl E, Holzinger A (2016) A tamper-proof audit and control system for the doctor in the loop. Brain Inf 3(4):269–279

    Article  Google Scholar 

  20. Kieseberg P, Schrittwieser S, Mulazzani M, Echizen I, Weippl E (2014) An algorithm for collusion-resistant anonymization and fingerprinting of sensitive microdata. Electron Market 24(2):113–124

    Article  Google Scholar 

  21. Kumar N, Katta V, Mishra H, Garg H (2014) Detection of data leakage in cloud computing environment. In: 2014 International conference on computational intelligence and communication networks, pp 803–807

  22. Nag A, Singh J, Singh A (2020) An efficient boolean based multi-secret image sharing scheme. Multimed Tools Appl 79:16219–16243

    Article  Google Scholar 

  23. Papadimitriou P, Garcia-Molina H (2011) Data leakage detection. IEEE Trans Knowl Data Eng 23(1):51–63

    Article  Google Scholar 

  24. Popper N, Endel F, Mayer R, Bicher M, Glock B (2017) Planning future health: Developing big data and system modelling pipelines for health system research. SNE Simul Notes Eur 27(4):203–208

    Article  Google Scholar 

  25. Quan Q, He F, Haoran L (2020) A multi-phase blending method with incremental intensity for training detection networks. The Visual Computer

  26. Shabtai A, Elovici Y, Rokach L (2012) A survey of data leakage detection and prevention solutions. Springer Science & Business Media

  27. Shehab M, Bertino E, Ghafoor A (2008) Watermarking relational databases using optimization-based techniques. IEEE Trans Knowl Data Eng 20 (1):116–129. https://doi.org/10.1109/TKDE.2007.190668

    Article  Google Scholar 

  28. Shen W, Qin J, Yu J, Hao R, Hu J (2019) Enabling identity-based integrity auditing and data sharing with sensitive information hiding for secure cloud storage. IEEE Trans Inf Forensic Secur 14(2):331–346

    Article  Google Scholar 

  29. Shu X, Yao D, Bertino E (2015) Privacy-preserving detection of sensitive data exposure. IEEE Trans Inf Forensic Secur 10(5):1092–1103

    Article  Google Scholar 

  30. Shu X, Zhang J, Yao D, Feng W (2016) Fast detection of transformed data leaks. IEEE Trans Inf Forensic Secur 11(3):528–542

    Article  Google Scholar 

  31. Wei J, Liu W, Hu X (2018) Secure data sharing in cloud computing using revocable-storage identity-based encryption. IEEE Trans Cloud Comput 6(4):1136–1148. https://doi.org/10.1109/TCC.2016.2545668

    Article  Google Scholar 

  32. Xu S, Yang G, Mu Y, Deng RH (2018) Secure fine-grained access control and data sharing for dynamic groups in the cloud. IEEE Trans Inf Forensic Secur 13(8):2101–2113. https://doi.org/10.1109/TIFS.2018.2810065

    Article  Google Scholar 

  33. Yingjiu L, Swarup V, Jajodia S (2005) Fingerprinting relational databases: schemes and specialties. IEEE Trans Depend Sec Comput 2(1):34–45. https://doi.org/10.1109/TDSC.2005.12

    Article  Google Scholar 

  34. Yoon-Su J, Seung-Soo S (2020) Staganography-based healthcare model for safe handling of multimedia health care information using vr. Multimed Tools Appl 79:16593–16607

    Article  Google Scholar 

  35. Yu H, He F, Yiteng P (2020) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed Tools Appl 79:5743–5765

    Article  Google Scholar 

  36. Zaghloul E, Zhou K, Ren J (2019) P-mod: Secure privilege-based multilevel organizational data-sharing in cloud computing. IEEE Trans Big Data:1–1

  37. Zhang S, He F (2019) Drcdn: learning deep residual convolutional dehazing networks. The Visual Computer

  38. Zhang J, He F, Chen Y (2020) A new haze removal approach for sky/river alike scenes based on external and internal clues. Multimed Tools Appl 79:2085–2107

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the anonymous reviewers for their valuable comments. This work was financially supported by the University Grants Commission (UGC), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishu Gupta.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Gupta, I. Online information leaker identification scheme for secure data sharing. Multimed Tools Appl 79, 31165–31182 (2020). https://doi.org/10.1007/s11042-020-09470-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09470-9

Keywords

Navigation