Skip to main content
Log in

Face recognition with a new local descriptor based on strings of successive values

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

A Correction to this article was published on 15 June 2021

This article has been updated

Abstract

In this paper, a novel face recognition approach based on strings of successive values (SSV) is presented. In contrast to most of the existing local descriptors which encode only a limited number of pixels included in a mask, the strings extract more discriminative information over the whole face region, by moving from the current pixel to the next one, and to the other next, and so on, according to the variations of their intensities. Therefore, the SSV can be stopped in any place of the face area, which allows us to encode more edge information and texture information than the existing methods. The proposed face recognition scheme requires several steps. Firstly, the images are divided into non-overlapping sub-regions from which the strings are extracted since each pixel produces two different strings. Thereafter, the dictionary of visual words is created to reduce the number of strings obtained from each patch of the image. Therefore, the face image is described only by visual words, because each string is replaced by its nearest dictionary word. As a result, the occurrence of visual words is computed in a histogram as a face descriptor. Finally, the recognition is performed by using the nearest neighbor classifier with the Hellinger distance. The effectiveness of the proposed approach is evaluated on three different databases, and the experimental results show that the recognition performances achieved are competitive or even outperform the literature state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041. https://doi.org/10.1109/TPAMI.2006.244

    Article  MATH  Google Scholar 

  2. Almabdy S, Elrefaei L (2019) Deep convolutional neural network-based approaches for face recognition. Appl Sci 9(20):4397. https://doi.org/10.3390/app9204397

    Article  Google Scholar 

  3. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  4. Bharkad SD, Kokare M (2011) Performance evaluation of distance metrics: application to fingerprint recognition. Int J Pattern Recognit Artif Intell 25(6):777–806. https://doi.org/10.1142/S0218001411009007

    Article  MathSciNet  Google Scholar 

  5. Bi H, Li N, Guan H, Lu D, Yang L (2019) A multi-scale conditional generative adversarial network for face sketch synthesis. IEEE International Conference on Image Processing (ICIP):3876–3880. https://doi.org/10.1109/ICIP.2019.8803629

  6. Chakraborti T, McCane B, Mills S, Pal U (2018) LOOP descriptor: local optimal-oriented pattern. IEEE Signal Process Lett 25(5):635–639. https://doi.org/10.1109/LSP.2018.2817176

    Article  Google Scholar 

  7. Chakraborty S, Singh SK, Chakraborty P (2017) Local quadruple pattern: A novel descriptor for facial image recognition and retrieval. Comput Electr Eng 62:92–104. https://doi.org/10.1016/j.compeleceng.2017.06.013

  8. Chan CH, Yan F, Kittler J, Mikolajczyk K (2015) Full ranking as local descriptor for visual recognition: a comparison of distance metrics on Sn. Pattern Recogn 48(4):1328–1336. https://doi.org/10.1016/j.patcog.2014.10.010

    Article  Google Scholar 

  9. Chihaoui M, Elkefi A, Bellil W, Ben Amar C (2016) A survey of 2D face recognition techniques. Computers 5(4):1–28. https://doi.org/10.3390/computers5040021

    Article  Google Scholar 

  10. Dubey SR (2019) Local directional relation pattern for unconstrained and robust face retrieval. Multimed Tools Appl 78(19):28063–28088. https://doi.org/10.1007/s11042-019-07908-3

    Article  Google Scholar 

  11. Dubey SR, Mukherjee S (2020) LDOP: local directional order pattern for robust face retrieval. Multimed Tools Appl 79:6363–6382. https://doi.org/10.1007/s11042-019-08370-x

    Article  Google Scholar 

  12. El Kaddouhi S, Saaidi A, Abarkan M (2017) Eye detection based on the Viola-Jones method and corners points. Multimed Tools Appl 76(21):23077–23097. https://doi.org/10.1007/s11042-017-4415-5

    Article  Google Scholar 

  13. El Kaddouhi S, Saaidi A, Abarkan M (2018) Eye detection based on Viola & Jones Detector, skin color, and eye template. Int J Control Autom 11(5):59–72. https://doi.org/10.14257/ijca.2018.11.5.06

    Article  Google Scholar 

  14. Fan DP, Zhang S, Wu YH, Liu Y, Cheng MM, Ren B, Rosin PL, Ji R (2019) Scoot: A perceptual metric for facial sketches. The IEEE Int Conf Comput Vis (ICCV):5612–5622

  15. Freeman H (1961) On the encoding of arbitrary geometric configurations. IRE Trans Electron Comput EC-10(2):260–268. https://doi.org/10.1109/TEC.1961.5219197

    Article  MathSciNet  Google Scholar 

  16. Gao G, Yu Y, Yang M, Huang P, Ge Q, Yue D (2020) Multi-scale patch-based representation feature learning for low-resolution face recognition. Appl Soft Comput 90:106–183. https://doi.org/10.1016/j.asoc.2020.106183

    Article  Google Scholar 

  17. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660. https://doi.org/10.1109/34.927464

    Article  Google Scholar 

  18. Guo G, Zhang N (2019) A survey on deep learning based face recognition. Comput Vis Image Underst 189:102805. https://doi.org/10.1016/j.cviu.2019.102805

    Article  Google Scholar 

  19. Guo G, Li SZ, Chan KL (2001) Support vector machines for face recognition. Image Vis Comput 19(9–10):631–638. https://doi.org/10.1016/S0262-8856(01)00046-4

    Article  Google Scholar 

  20. Hassaballah M, Aly S (2015) Face recognition: challenges, achievements and future directions. IET Comput Vis 9(4):614–626. https://doi.org/10.1049/iet-cvi.2014.0084

    Article  Google Scholar 

  21. He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340. https://doi.org/10.1109/TPAMI.2005.55

    Article  Google Scholar 

  22. Hu H, Li Y, Zhu Z, Zhou G (2018) CNNAuth : Continuous Authentication via Two-stream Convolutional Neural Networks. 2018 IEEE International Conference on Networking, Architecture and Storage, NAS 2018 - Proceedings 1–9. https://doi.org/10.1109/NAS.2018.8515693

  23. Jabid T, Kabir MH, Chae O (2010) Local directional pattern (LDP) for face recognition. 2010. Digest of Technical Papers International Conference on Consumer Electronics (ICCE) 8(4):2423–2437. https://doi.org/10.1109/ICCE.2010.5418801

    Article  Google Scholar 

  24. Kas M, El-merabet Y, Ruichek Y, Messoussi R (2018) Mixed neighborhood topology cross decoded patterns for image-based face recognition. Expert Syst Appl 114:119–142. https://doi.org/10.1016/j.eswa.2018.07.035

    Article  Google Scholar 

  25. Kas M, El-merabet Y, Ruichek Y, Messoussi R (2020) A comprehensive comparative study of handcrafted methods for face recognition LBP-like and non LBP operators. Multimed Tools Appl 79(1–2):375–413. https://doi.org/10.1007/s11042-019-08049-3

    Article  Google Scholar 

  26. Kasar MM, Bhattacharyya D, Kim T (2016) Face Recognition Using Neural Network: A Review. International Journal of Security and Its Applications 10(3):81–100. https://doi.org/10.14257/ijsia.2016.10.3.08

  27. Khan SA, Hussain A, Usman M, Nazir M, Riaz N, Mirza AM (2014) Robust face recognition using computationally efficient features. J Intell Fuzzy Syst 27(6):3131–3143. https://doi.org/10.3233/IFS-141270

    Article  Google Scholar 

  28. Khan SA, Usman M, Riaz N (2015) Face recognition via optimized features fusion. J Intell Fuzzy Syst 28(4):1819–1828. https://doi.org/10.3233/IFS-141468

    Article  Google Scholar 

  29. Khan SA, Ishtiaq M, Nazir M, Shaheen M (2018) Face recognition under varying expressions and illumination using particle swarm optimization. J Comput Sci 28:94–100. https://doi.org/10.1016/j.jocs.2018.08.005

    Article  Google Scholar 

  30. Lee K-C, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698. https://doi.org/10.1109/TPAMI.2005.92

    Article  Google Scholar 

  31. Leng L, Zhang J (2012) Palmhash Code for palmprint verification and protection. Proc. of 25th IEEE Canadian Conf. Electr. Comp. Eng:1–4. https://doi.org/10.1109/CCECE.2012.6334853

  32. Leng L, Zhang J, Khan MK, Chen X, Alghathbar K (2010) Dynamic weighted discrimination power analysis: a novel approach for face and palmprint recognition in DCT domain. Int J Phys Sci 5(17):467–471. https://doi.org/10.1109/ICTC.2010.5674791

    Article  Google Scholar 

  33. Leng L, Zhang J, Chen G, Khan MK, Alghathbar K (2011) Two-directional two-dimensional random projection and its variations for face and palm print recognition. International Conference on Computational Science and its Applications (ICCSA). Lect Notes Comput Sci 6786:458–470. https://doi.org/10.1007/978-3-642-21934-4_37

  34. Leng L, Zhang S, Bi X, Khan MK (2012) Two-dimensional cancelable biometric scheme. International Conference on Wavelet Analysis and Pattern Recognition 2012:164–169. https://doi.org/10.1109/ICWAPR.2012.6294772

    Article  Google Scholar 

  35. Leng L, Li M, Kim C, Bi X (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76(1):333–354. https://doi.org/10.1007/s11042-015-3058-7

    Article  Google Scholar 

  36. Li L, Liu S, Peng Y, Sun Z (2016) Overview of principal component analysis algorithm. Optik 127(9):3935–3944. https://doi.org/10.1016/j.ijleo.2016.01.033

    Article  Google Scholar 

  37. Li Y, Hu H, Zhu Z, Zhou G (2020) SCANet : sensor-based continuous authentication with two-stream convolutional neural networks. ACM T Sensor Network 1(1). https://doi.org/10.1145/3397179

  38. Liao S, Zhu X, Lei Z, Zhang L, Li SZ (2007) Learning multi-scale block local binary patterns for face recognition. Lee SW, Li SZ (eds) Advances in Biometrics International Conference on Biometrics 4642:828–837. https://doi.org/10.1007/978-3-540-74549-5_87

  39. Liu L, Fieguth P, Zhao G, Pietikäinen M, Hu D (2016) Extended local binary patterns for face recognition. Inf Sci 358–359:56–72. https://doi.org/10.1016/j.ins.2016.04.021

    Article  Google Scholar 

  40. Liu J, Chen Y, Sun S (2019) A novel local texture feature extraction method called multi-direction local binary pattern. Multimed Tools Appl 78(13):18735–18750. https://doi.org/10.1007/s11042-018-7095-x

    Article  Google Scholar 

  41. Perumal S, Chandra Mouli PVSSR (2016) Dimensionality reduced local directional pattern (DR-LDP) for face recognition. Expert Syst Appl 63:66–73. https://doi.org/10.1016/j.eswa.2016.06.03

    Article  Google Scholar 

  42. Prasad PS, Pathak R, Gunjan VK, Rao HVR (2019) Deep learning based representation for face recognition. In: Kumar A, Mozar S (eds) ICCCE 2019, vol 570. Lecture Notes in Electrical Engineering, pp 419–424. https://doi.org/10.1007/978-981-13-8715-9_50

  43. Rikhtegar A, Pooyan M, Manzuri-Shalmani MT (2016) Genetic algorithm-optimised structure of convolutional neural network for face recognition applications. IET Comput Vis 10(6):559–566. https://doi.org/10.1049/iet-cvi.2015.0037

    Article  Google Scholar 

  44. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  45. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. Proceedings of 1994. IEEE Workshop Appl Comput Vis:138–142. https://doi.org/10.1109/ACV.1994.341300

  46. Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. Proceedings Ninth IEEE International Conference on Computer Vision 2:1470–1477. https://doi.org/10.1109/ICCV.2003.1238663

    Article  Google Scholar 

  47. Tharwat A, Tarek G, Abdelhameed I, Aboul Ella H (2017) Linear discriminant analysis: a detailed tutorial. AI Commun 30(2):169–190. https://doi.org/10.3233/AIC-170729

    Article  MathSciNet  Google Scholar 

  48. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86. https://doi.org/10.1162/jocn.1991.3.1.71

    Article  Google Scholar 

  49. Wang W, Yang J, Xiao J, Li S, Zhou D (2015) Face recognition based on deep learning. Human Centered Computing:812–820. https://doi.org/10.1007/978-3-319-15554-8_73

  50. Wen Y, Zhang L, Von Deneen KL, He L (2016) Face recognition using discriminative locality preserving vectors. Digit Signal Process 50:103–113. https://doi.org/10.1016/j.dsp.2015.11.001

    Article  Google Scholar 

  51. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227. https://doi.org/10.1109/TPAMI.2008.79

    Article  Google Scholar 

  52. Yujian L, Bo L (2007) A normalized Levenshtein distance metric. IEEE Trans Pattern Anal Mach Intell 29(6):1091–1095. https://doi.org/10.1109/TPAMI.2007.1078

    Article  Google Scholar 

  53. Zeng H, Chen J, Cui X, Cai C, Ma K (2016) Quad binary pattern and its application in mean-shift tracking. Neurocomputing 217:3–10. https://doi.org/10.1016/j.neucom.2015.11.130

    Article  Google Scholar 

  54. Zeng J, Liu M, Fu X, Gu R, Leng L (2019) Curvature bag of words model for shape recognition. IEEE Access 7:57163–57171. https://doi.org/10.1109/ACCESS.2019.2913688

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zaaraoui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Section 3 contains an incorrect numbering of subsection headings and the Algorithms 3, 4, 5 and 6 were duplicated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaaraoui, H., El Kaddouhi, S., Saaidi, A. et al. Face recognition with a new local descriptor based on strings of successive values. Multimed Tools Appl 80, 27017–27044 (2021). https://doi.org/10.1007/s11042-020-09400-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09400-9

Keywords

Navigation