Skip to main content

Advertisement

Log in

Super-resolution Quality Criterion (SRQC): a super-resolution image quality assessment metric

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, image super-resolution has reinforced image resolution enhancement approaches in real-time and ensuring visual quality of super resolved images has evolved as a key research problem. Most quantitative benchmarks rely on full reference metrics which would work in the presence of a reference image. However, the unavailability of ground truth images in real world applications and the size constraints of low resolution and high resolution images often pose major challenges to such metrics. In order to address these problems, we present a super-resolution image quality index (SRQC –Super-resolution Quality Criterion), which can effectively quantify the efficiency and performance of image super-resolution algorithms. SRQC benchmark evaluates the quality score of a super resolved image according to the perceptual concepts of low-level spatial features in high sharpness space and curvelet based quality-aware features from focal energy bands, which can be used to capture the quality preservation of an SR image. The proposed metric is referenceless, the significance being that the assessment does not require ground-truth image. Explicitly, the SR image is assessed in the curvelet domain which is suitable for the no-reference super-resolution image quality assessment based on human perception. Experimental scores illustrate that the SRQC is more competent in modeling the features from curvelet transform, thus quantifying the quality score of the super resolved image and outperforming the formerly reported image quality assessment metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dong W, Zhang L, Shi G, Wu X (2011) Image delurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857

    Article  MathSciNet  Google Scholar 

  2. Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super- resolution. In: ECCV184–199

  3. Elder JH (1999) Are Edges Incomplete. Int J Comput Vis 34:97122

    Article  Google Scholar 

  4. Fang Y, Liu J, Zhang Y, Lin W, Gao Z (2018) Blind visual quality assessment for image super-resolution by convolutional neural network. Multimed Tools Appl 77:29829–29846

    Article  Google Scholar 

  5. Fang Y, Liu J, Zhang Y, Lin W, Gao Z (2019) Reduced reference image quality assessment of image super-resolution by energy change and texture variation. J Vis Commun Image R 60:140–148

    Article  Google Scholar 

  6. Fattal R (2007) Image upsampling via imposed edge statistics. ACM Trans Graph 26(3):95

    Article  Google Scholar 

  7. Girod B (1993) What’s wrong with mean-squared error? In: Digital Images and Human Vision. MIT Press, pp. 207–220

  8. Glasner D , Bagon S, Irani M (2009) Super-resolution from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp 349-356.

  9. Greeshma MS, Bindu VR (2019) Novel quality metric for image super-resolution algorithms - super-resolution entropy metric (SREM). In: the International Conference on Recent Trends in Image Processing & Pattern Recognition (RTIP2R)

  10. Irani M, Peleg S (1991) Improving resolution by image registration. CVGIP. 53(3):231–239

    Google Scholar 

  11. Kang L, Ye P, Li Y, Deormann D (2014) Convolutional nueral network for no-reference image quality assessment. In: IEEE conference on Computer Vision and Pattern Recognition, pp 1733–1740

  12. Kang LW, Hsu CC, Zhang B, Lin CW (2015) Learning-based joint super-resolution and deblocking for a highly compressed image. IEEE Trans Multimed 17(7):921–934

    Article  Google Scholar 

  13. Kim KI, Kwon Y (2010) Single-image super-resolution using sparse regression and natural image prior. IEEE Trans Pattern Anal Mach Intell 32(6):1127–1133. https://doi.org/10.1109/TPAMI

    Article  Google Scholar 

  14. Kodak Lossless True Colour Image Suite : http://r0k.us/graphics/kodak/ Accessed 26 Jan 2019

  15. Li X, Orchard MT (2001) New edge –directed interpolation. IEEE Trans Image Process 10(10):1521–1527

    Article  Google Scholar 

  16. Li Q, Wan Z (2009) Reduced-reference image quality assessment using divisive normalization-based image representation. IEEE J Sel Top Signal Proc 3(2):202–211

    Article  Google Scholar 

  17. Liang L, Wang S, Chen J, Ma S, Zhao D, Gao W (2010) No-reference perceptual image quality metric using gradient profiles for JPEG 2000. Signal Process Image Commun 25:502–516

    Article  Google Scholar 

  18. Liu L, Dong H, Huang H, Bovik AC (2014) No-reference image quality assessment in curvelet domain. Signal Process Image Commun 29:494–505

    Article  Google Scholar 

  19. Ma ZKKK (2013) Contrast-guided image interpolation. IEEE Trans Image Process 22(11):4271–4285

    Article  MathSciNet  Google Scholar 

  20. Ma C, Yang C, Yang Y, Yang MH (2017) Learning a no-reference quality metric for single-image super-resolution. Comput Vis and Image Undest 158:1–16

    Article  Google Scholar 

  21. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708. https://doi.org/10.1109/TIP.2012.2214050

    Article  MathSciNet  MATH  Google Scholar 

  22. Moorthy AK, Bovik A (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364. https://doi.org/10.1109/TIP.2011.2147325

    Article  MathSciNet  MATH  Google Scholar 

  23. Naidu VPS (2010) Discrete Cosine Transform-based Image Fusion. Def Sci J 60:48–54

    Article  Google Scholar 

  24. Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview, IEEE signal process. Mag 20(3):21–36

    Google Scholar 

  25. Pei S, Chen L (2015) Image quality assessment using human visual DOG model fused with random forest. IEEE Trans Image Process 24(11):3282–3892

    Article  MathSciNet  Google Scholar 

  26. Reenu M, David D, Aneesh Raj SS, MS Nair (2013) Wavelet based sharp features (WASH): an image quality assessment metric based on HVS. International Conference on Advanced Computing, Networking and Security, pp79–83.

  27. Reibman A R, Bell R M, Gray S (2006) Quality assessment for super-resolution image enhancement. In: IEEE Conference on Image Processing.

  28. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352. https://doi.org/10.1109/TIP.2012.2191563

    Article  MathSciNet  MATH  Google Scholar 

  29. Santosh KC, Wendling L, Antani S, Thoma GR (2016) Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell Syst 31(3):66–75. https://doi.org/10.1109/MIS.2016.24

    Article  Google Scholar 

  30. Shan Q, Li Z, Jia J et al (2008) Fast image/video upsampling. ACM Trans Graph 27(5):153. https://doi.org/10.1145/1409060.1409106

    Article  Google Scholar 

  31. Sun J, Xu Z, Shum H (2008) Image super-resolution using gradient profile prior. CVPR

  32. Tang H, Joshi N, Kapoor A(2014) Blind image quality assessment using semi-supervised rectifier networks. CVPR

  33. Timofte R, Smet VD, Gool LV (2016) Semantic super-resolution: when and where is it useful? Comput Vis Image Undest 142:1–12

    Article  Google Scholar 

  34. Tsai RY, Huang TS (1984) Multi-frame image restoration and registration. In: Adv. Comput. Vis. Image Process.1:131-339

  35. Varadarajan S, Karam L J (2008) An improved perception-based no- reference objective image sharpness metric using iterative edge refinement. In: Proceedings of the IEEE ICIP. pp. 401–404

  36. Wainwright MJ, Simoncelli EP (2000) Scale mixtures of Gaussians and the statistics of natural images. NIPS

  37. Wang Z, Li Q (2011) Information content weighting for perceptual image quality assessment. IEEE Trans Image Process 20(5):1185–1198

    Article  MathSciNet  Google Scholar 

  38. Wang Z, Bovik A, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  39. Wang S. Zhang X. Ma S. Gao W (2013) Reduced reference image quality assessment using entropy of primitives. In: the 30 th picture coding symposium, pp 193-196

  40. Wang Z, Yang Y, Wang Z (2015) Learning super-resolution jointly from internal and external examples. IEEE Trans Image Process 24(11):4359–4371

    Article  MathSciNet  Google Scholar 

  41. Wu J, Yin ZP, Xiong Y (2007) The fast multilevel fuzzy edge detection of blurry images. IEEE Signal Proc Lett 14(5):344–347

    Article  Google Scholar 

  42. Wu J, Lin W, Shi G, Liu A (2013) Reduced-reference image quality assessment with visual information fidelity. IEEE Trans Multimed 15(7):1700–1705

    Article  Google Scholar 

  43. Wu Q, Li H, Wang Z et al (2017) Bling image quality assessment based on rank-order regularized regression. IEEE Trans. Multimedia (99): 1-1

  44. Yang M, Wang Y (2013) A self-learning approach to single image super-resolution. IEEE Trans Multimed 15(3):498–508

    Article  MathSciNet  Google Scholar 

  45. Yang CMC-Y, Yang M (2014) Single image super-resolution: a benchmark. In: European Conference on Computer vision

  46. Yang J, Wright J, Huang TS, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  47. Ye P, Kumar J, Kang L, Deormann D S (2012) Unsupervised feature learning framework for no-reference image quality assessment. In: IEEE conference on Computer Vision and Pattern Recognition

  48. Yeganeh H, Rostami M, Wang Z (2012) Objective quality assessment for image super-resolution: a natural scene statistics approach. ICIP.

  49. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386. https://doi.org/10.1109/TIP.2011.210973

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support extended by DST-PURSE Phase II, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Greeshma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greeshma, M.S., Bindu, V.R. Super-resolution Quality Criterion (SRQC): a super-resolution image quality assessment metric. Multimed Tools Appl 79, 35125–35146 (2020). https://doi.org/10.1007/s11042-020-09352-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09352-0

Keywords

Navigation