Skip to main content
Log in

Cost-effective broad learning-based ultrasound biomicroscopy with 3D reconstruction for ocular anterior segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Anterior Chamber Angle (ACA) assessment plays an important role for the diagnosis of glaucoma. Most of the existing techniques relied on Anterior Segment Optical Coherence Tomography (AS-OCT) or Swept Source Optical Coherence Tomography (SS-OCT). We proposed a system for 360° overview of iridocorneal angle of anterior chamber (ICAAC) via Ultrasound Biomicroscopy (UBM). UBM approach acquires the visualization of anterior segment components as well as diseased structures (glaucoma). Our system consists of a new pairing scheme of feature descriptors, i.e. (FREAK, BRISK), (SURF, BRISK) and Broad Learning System (BLS) for 3D reconstruction and segmentation of ICAAC. The 360° overview of 2D ICAAC gives global conception for ACA assessment. 3D images provide a detailed assessment with the amount of opposition’s and synechiae in angle-closure suspects, angle-closure and angle-closure glaucoma in bright light conditions. Extensive evaluations are performed on dataset consists of 650 ICAAC images in five directions of 65 subjects with 10 samples per subject (5 left eye and 5 right eye) from Shanghai Sixth People’s Hospital. Experiments showed that our approach achieves an overall accuracy of 98.72% with training and testing time 29.26(s), 1.232(s) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cao W, Lyu F, He Z, Cao G, He Z (2018) Multimodal medical image registration based on feature spheres in geometric algebra. IEEE Access 6:21164–21172

    Article  Google Scholar 

  2. Chang CC, Chen PY, Huang H, Huang CC (2018) In vivo visualization of vasculature in adult zebrafish by high frequency ultrafast ultrasound imaging. IEEE Trans Biomed Eng 1–10

  3. Chen X, Jiang M, Zuo L, Jiang J (2017) A feature matching method for simultaneous localization and mapping. In: IEEE ITNEC, pp 1091–1094

  4. Chen CP, Liu Z (2017) Broad learning system: A new learning paradigm and system without going deep. In: 2017 32nd youth academic annual conference of chinese association of automation (YAC). IEEE, pp 1271–1276

  5. Chen CLP, Liu Z (2018) Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans Neural Netw Learn Syst 29(1):10–24

    Article  MathSciNet  Google Scholar 

  6. Donida Labati R, Genovese A, Muñoz E, Piuri V, Scotti F (2019) 3-D granulometry using image processing, vol 15, pp 1251–1264

  7. Fu H, Baskaran M, Xu Y, Lin S, Wong DWK, Liu J, Tun TA, Mahesh M, Perera SA, Aung T (2019) A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am J Ophthalmol

  8. Fu H, Cheng J, Xu Y, Zhang C, Wong DWK, Liu J, Cao X (2018) Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans Med Imag 37(11):2493–2501

    Article  Google Scholar 

  9. Fu H, Xu Y, Lin S, Zhang X, Wong DWK, Liu J, Frangi AF, Baskaran M, Aung T (2017) Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT. IEEE Trans Med Imag 36 (9):1930–1938

    Article  Google Scholar 

  10. Georgakis G, Karanam S, Wu Z, Ernst J, Košecká J (2018) End-to-end learning of keypoint detector and descriptor for pose invariant 3D matching. In: IEEE CVPR, pp 1965–1973

  11. Gomez CH, Medathati K, Kornprobs P, Murino V, Sona D (2015) Improving FREAK descriptor for image classification. In: International conference on computer vision systems, pp 14–23

  12. Guo X, Wu N, Zhou J, Du C, Wang X (2017) Ultrasound generation from side wall of optical fibers. In: International conference on optical communications and networks, pp 1–3

  13. Han J, Ji X, Hu X, Zhu D, Li K, Jiang X, Cui G, Guo L, Liu T (2013) Representing and retrieving video shots in human-centric brain imaging space. IEEE Trans Image Process 22(7):2723–2736

    Article  MathSciNet  Google Scholar 

  14. Hoang VT, Jo KH (2018) 3D human pose estimation using cascade of multiple neural networks. IEEE Trans Ind Inform 1–9

  15. Huang Q, Lan J, Li X (2019) Robotic arm based automatic ultrasound scanning for three-dimensional imaging. IEEE Trans Ind Inform 15(2):1173–1182

    Article  Google Scholar 

  16. Huang K, Li J, Cheng S, Yu J, Tian W, Zhao L, Hu J, Chang CC (2020) An efficient algorithm of facial expression recognition by tsg-rnn network. In: International conference on multimedia modeling. Springer, pp 161–174

  17. Kondapalli SH, Alazzawi Y, Malinowski M, Timek T, Chakrabartty S (2018) Multiaccess in vivo biotelemetry using sonomicrometry and m-scan ultrasound imaging. IEEE Trans Biom Eng 65(1):149–158

    Article  Google Scholar 

  18. Kumawat A, Panda S (2018) Feature detection and description in remote sensing images using a hybrid feature detector. Procedia Comput Sci 132:277–287

    Article  Google Scholar 

  19. Li P, Chen Z, Yang LT, Zhang Q, Deen MJ (2017) Deep convolutional computation model for feature learning on big data in internet of things. IEEE Trans Ind Inform 14(2):790–798

    Article  Google Scholar 

  20. Liu H, Guo Q, Wang G, Gupta B, Zhang C (2019) Medical image resolution enhancement for healthcare using nonlocal self-similarity and low-rank prior. Multimed Tools Appl 78(7):9033–9050

    Article  Google Scholar 

  21. Lv N, Chen C, Qiu T, Sangaiah AK (2018) Deep learning and superpixel feature extraction based on contractive autoencoder for change detection in SAR images. IEEE Trans Ind Inform 14(12):5530–5538

    Article  Google Scholar 

  22. Ma Y, Zhao S, Huang B (2019) Feature extraction of constrained dynamic latent variables. IEEE Trans Ind Inform 1–9

  23. Maheshwari S, Pachori RB, Acharya UR (2017) Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE Journal of Biomedical and Health Informatics 21 (3):803–813

    Article  Google Scholar 

  24. Mak H, Xu G, Leung CKS (2013) Imaging the iris with swept-source optical coherence tomography: Relationship between iris volume and primary angle closure. Ophthalmology 120(12):2517–2524

    Article  Google Scholar 

  25. Malekabadi AJ, Khojastehpour M, Emadi B (2018) A comparative evaluation of combined feature detectors and descriptors in different color spaces for stereo image matching of tree. Sci Hortic 228:187–195

    Article  Google Scholar 

  26. McKee H, Ye C, Yu M, Liu S, Lam DSC, Leung CKS (2013) Anterior chamber angle imaging with swept-source optical coherence tomography: Detecting the scleral spur, schwalbe’s line, and schlemm’s canal. J Glaucoma 22 (6):468–472

    Article  Google Scholar 

  27. Mendes OLC, Lucena AR, Lucena DR, Cavalcante TS, de Alexandria AR (2020) Automatic segmentation of macular holes in optical coherence tomography images: a review. J Artif Intell Syst 1(1):163–185

    Article  Google Scholar 

  28. Mo S, Yang W, Wang G, Liao Q (2020) Emotion recognition with facial landmark heatmaps. In: International conference on multimedia modeling. Springer, pp 278–289

  29. Mouats T, Aouf N, Nam D, Vidas S (2018) Performance evaluation of feature detectors and descriptors beyond the visible. J Intell Robot Syst 92(1):33–63

    Article  Google Scholar 

  30. Nguyen AT, Liu T, Liu J (2016) Applications of scheimpflug imaging in glaucoma management: current and potential applications. J Ophthalmol 2016

  31. Pan C, Hu T, Shen L (2015) BRISK based target localization for fixed-wing UAV’s vision-based autonomous landing. In: IEEE international conference on information and automation, pp 2499–2503

  32. Porporato N, Baskaran M, Tun TA, Sultana R, Tan MC, Quah JH, Allen J, Friedman DS, Cheng CY, Aung T (2019) Assessment of circumferential angle closure with swept-source optical coherence tomography: a community based study. Am J Ophthalmol 199:133–139

    Article  Google Scholar 

  33. Qiao Y, van Lew B, Lelieveldt BPF, Staring M (2016) Fast automatic step size estimation for gradient descent optimization of image registration. IEEE Trans Med Imag 35(2):391–403

    Article  Google Scholar 

  34. Raluca M, Mircea F, Andrei F, Carmen D, Miruna N, Grigorios T, Ileana U (2015) Old and new in exploring the anterior chamber angle. Rom J Ophthalmol 59(4):208–216

    Google Scholar 

  35. Rojas JD, Papadopoulou V, Czernuszewicz TJ, Rajamahendiran RM, Chytil A, Chiang YC, Chong DC, Bautch VL, Rathmell WK, Aylward S, Gessner RC, Dayton PA (2018) Ultrasound measurement of vascular density to evaluate response to anti-angiogenic therapy in renal cell carcinoma. IEEE Trans Biom Eng 1–9

  36. Sait ARW, Uthayakumar J, Shankar K, Kumar KS (2019) Introduction to multimedia tools and applications. In: Handbook of multimedia information security: techniques and applications. Springer, pp 3–14

  37. Tanveer M, Pachori RB (2019) Machine intelligence and signal analysis, vol 748. Springer, Berlin

    Book  Google Scholar 

  38. Thakur S, Singh AK, Ghrera SP, Elhoseny M (2019) Multi-layer security of medical data through watermarking and chaotic encryption for tele-health applications. Multimed Tools Appl 78(3):3457–3470

    Article  Google Scholar 

  39. Thirunavukkarasu V, Kumar JS (2016) Passive image tamper detection based on fast retina key point descriptor. In: IEEE international conference on advances in computer applications, pp 279–285

  40. Wang X, Seetohul V, Chen R, Zhang Z, Qian M, Shi Z, Yang G, Mu P, Wang C, Huang Z, Zhou Q, Zheng H, Cochran S, Qiu W (2017) Development of a mechanical scanning device with high-frequency ultrasound transducer for ultrasonic capsule endoscopy. IEEE Trans Med Imag 36(9):1922–1929

    Article  Google Scholar 

  41. Wang Y, Wei Z, Yang J (2019) Feature trend extraction and adaptive density peaks search for intelligent fault diagnosis of machines. IEEE Trans Ind Inform 15(1):105–115

    Article  Google Scholar 

  42. Wu X, Housden J, Ma Y, Razavi B, Rhode K, Rueckert D (2015) Fast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventions. IEEE Trans Med Imag 34(4):861–876

    Article  Google Scholar 

  43. Xu BY, Pardeshi AA, Burkemper B, Richter GM, Lin SC, McKean-Cowdin R, Varma R (2019) Differences in anterior chamber angle assessments between gonioscopy, eyecam, and anterior segment oct: the chinese american eye study. Transl Vis Sci Technol 8(2):5–5

    Article  Google Scholar 

  44. Yang G, Chen J, Gao Z, Li S, Ni H, Angelini E, Wong T, Mohiaddin R, Nyktari E, Wage R et al (2020) Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention. Future Gener Comput Syst

  45. Yang W, Wang S, Hu J, Zheng G, Yang J, Valli C (2019) Securing deep learning based edge finger-vein biometrics with binary decision diagram. IEEE Trans Ind Inform 1–11

  46. Yu H, He F, Pan Y (2019) A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation. Multimed Tools Appl 78(9):11779–11798

    Article  Google Scholar 

  47. Zhou G, Xiao L, Pei X, Li C, Qin H, Zhang J, Fang Z (2017) Paper infrared image retrieval of power equipment based on perceptual hash and SURF. In: ICAIT, pp 387–392

  48. Čížek P, Faigl J (2018) Real-time FPGA-based detection of speeded-up robust features using separable convolution. IEEE Trans Ind Inform 14 (3):1155–1163

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61872241 and Grant 61572316, in part by the Science and Technology Commission of Shanghai Municipality under Grant 18410750700, Grant 17411952600, and Grant 16DZ0501100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Sheng, Qiang Wu or Khan Muhammad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Saba Ghazanfar Ali and Yan Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.G., Chen, Y., Sheng, B. et al. Cost-effective broad learning-based ultrasound biomicroscopy with 3D reconstruction for ocular anterior segmentation. Multimed Tools Appl 80, 35105–35122 (2021). https://doi.org/10.1007/s11042-020-09303-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09303-9

Keywords

Navigation