Pulse coupled neural network based on Harris hawks optimization algorithm for image segmentation

Abstract

Medical image segmentation is a hotspot in the field of image segmentation, and there are many segmentation methods. As a method of image segmentation, pulse coupled neural network (PCNN) has excellent segmentation effect. Of course, it also reduces the efficiency and effect of segmentation because of the complexity of parameter setting and the need for manual setting. This paper presents a method of searching simplified PCNN parameters by using Harris Hawks optimization (HHO) algorithm. For one thing the number of parameters of PCNN is reduced without affecting the segmentation effect, for another the corresponding parameters of PCNN are searched quickly and accurately by intelligent optimization algorithm. Then, image entropy (H) and mutual information entropy (MI) are introduced as fitness functions. The performance of HHO-PCNN is compared with WOA-PCNN, SCA-PCNN, SSA-PCNN, PSO-PCNN, GWO-PCNN, MVO-PCNN, Otsu and K-means by performance indicators (UM, CM, Precision, Recall, and Dice). The experimental results verify the superiority of this method in image segmentation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Alsmadi MK (2018) A hybrid fuzzy C-means and Neutrosophic for jaw lesions segmentation. Ain Shams Eng. J. 9:697–706

    Google Scholar 

  2. 2.

    Alsmadi MK (2018) A hybrid fuzzy C-means and Neutrosophic for jaw lesions segmentation. Ain Shams Eng J 9:697–706

    Google Scholar 

  3. 3.

    Bai X, Zhang T, Wang C et al (2013) A fully automatic player detection method based on one-class SVM [J]. IEICE Trans Inf Syst 96(2):387–391

    Google Scholar 

  4. 4.

    Benrhouma O, Hermassi H, Abd El-Latif AA et al (2016) Chaotic watermark for blind forgery detection in images [J]. Multimedia Tools Appl 75(14):8695–8718

    Google Scholar 

  5. 5.

    Cheng S, Qiguang M, Pengfei X (2013) A novel algorithm of remote sensing image fusion based on Shearlets and PCNN. Neurocomput. 117:47–53

    Google Scholar 

  6. 6.

    Cvejic N, Canagarajah CN, Bull DR (2006) Image fusion metric based on mutual information and Tsallis entropy. Electron Lett 42:626

    Google Scholar 

  7. 7.

    Deng X, Ma Y, Dong M (2016) A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN. Pattern Recogn Lett 79:8–17

    Google Scholar 

  8. 8.

    Dong Z, Lai CS, Qi D, Xu Z, Li C, Duan S (2018) A general memristor-based pulse coupled neural network with variable linking coefficient for multi-focus image fusion. Neurocomput 308:172–183

    Google Scholar 

  9. 9.

    Eckhorn R (1990) Feature linking via Synchro-nization among distributed assembles: simulations of results from cat visual cortex. Neural Comput 2:293–307

    Google Scholar 

  10. 10.

    Fuliang H, Yongcai G, Chao G (2019) A parameter estimation method of the simple PCNN model for infrared human segmentation. Opt Laser Technol 110:114–119

    Google Scholar 

  11. 11.

    Guo WY, Wang XF, Xia XZ (2014) Two-dimensional Otsu's thresholding segmentation method based on grid box filter. Opt- Int J Light Electron Opt 125:5234–5240

    Google Scholar 

  12. 12.

    Hage IS, Hamade RF (2013) Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization. Comput. Med. Imaging Graphics 37:466–474

    Google Scholar 

  13. 13.

    Hall O, Hay GJ, Bouchard A, Marceau DJ (2004) Detecting dominant landscape objects through multiple scales: an integration of object-specific methods and watershed segmentation. Landsc Ecol 19:59–76

    Google Scholar 

  14. 14.

    Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc 28:100–108

    MATH  Google Scholar 

  15. 15.

    Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872

    Google Scholar 

  16. 16.

    Helmy AK, El-Taweel GS (2016) Image segmentation scheme based on SOM–PCNN in frequency domain. Appl Soft Comput 40:405–415

    Google Scholar 

  17. 17.

    Hu J, Li D, Duan Q et al (2012) A fuzzy C-means clustering based algorithm to automatically segment fish disease visual symptoms Sens. Lett. 10:190–197

    Google Scholar 

  18. 18.

    Ji HW, He JP, Yang X, et al. (2013) ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques. 17: 690-698.

  19. 19.

    Jing H, He X, Han Q, Abd el-Latif AA, Niu X (2014) Saliency detection based on integrated features [J]. Neurocomputing 129:114–121

    Google Scholar 

  20. 20.

    Johnson JL (1993) Waves in pulse-coupled neural networks. Proc World Congress on Neural Networks 4:4–299

    Google Scholar 

  21. 21.

    Johnson JL (1994) Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images. Appl Opt 33:6239–6253

    Google Scholar 

  22. 22.

    Johnson JL, Padgett ML (1999) PCNN models and applications. IEEE Trans Neural Netw 10:480–498

    Google Scholar 

  23. 23.

    Johnson JL, Ritter D (1993) Observation of periodic waves in a pulse-oupled neuralnetwork. Opt Lett 18:1253–1255

    Google Scholar 

  24. 24.

    Johnson JL, Padgett ML, Omidvar O (1999) Guest editorial overview of pulse coupled neural network (PCNN) special issue IEEE trans. Neural Netw 10:461–463

    Google Scholar 

  25. 25.

    Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Google Scholar 

  26. 26.

    Kittler J, Illingworth J (1985) On threshold selection using clustering criteria. IEEE Trans Syst Man Cybern SMC-15:652–655

    Google Scholar 

  27. 27.

    Kong W, Zhang L, Lei Y (2014) Novel fusion method for visible light and infrared images based on NSST–SF–PCNN. Infrared Phys Technol 65:103–112

    Google Scholar 

  28. 28.

    Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE trans. Neural Netw 10:591–598

    Google Scholar 

  29. 29.

    Levine MD, Nazif AM (1985) Dynamic measurement of computer generated image segmentations. IEEE Trans Pattern Anal Mach Intell 7:155–164

    Google Scholar 

  30. 30.

    Liao X, Yu Y, Li B, et al. (2019) A new payload partition strategy in color image steganography [J]. IEEE Trans Circuits Syst Video Technol 1–1.

  31. 31.

    Lindblad T, Becanovic V, Lindsey CS, Szekely G (1997) Intelligent detectors modelled from the cat's eye Nucl. Instrum Methods Phys Res 389:245–250

    Google Scholar 

  32. 32.

    Liu C, Zhou A, Zhang Q et al (2014) Adaptive image segmentation by using mean-shift and evolutionary optimization. IET Image Process 8:327–333

    Google Scholar 

  33. 33.

    Madhukumar S, Santhiyakumari N (2015) Evaluation of k-means and fuzzy C-means segmentation on MR images of brain. Egypt J Radiol Nucl Med 46:475–479

    Google Scholar 

  34. 34.

    Mandavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23

    Google Scholar 

  35. 35.

    Martini MN, Gustafson WI, Yang Q et al (2014) Impact of resolution on simulation of closed mesoscale cellular convection identified by dynamically guided watershed segmentation. J Geophys Res Atmos 119:12674–12688

    Google Scholar 

  36. 36.

    Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowledge Based Syst 96:120–133

    Google Scholar 

  37. 37.

    Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  38. 38.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  39. 39.

    Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multiverse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513

    Google Scholar 

  40. 40.

    Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  41. 41.

    Mohammed MM, Badr A, Abdelhalim MB (2015) Image classification and retrieval using optimized pulse-coupled neural network. Expert Syst Appl 42:4927–4936

    Google Scholar 

  42. 42.

    Monica SM, Sahoo SK (2014) Pulse coupled neural networks and its applications. Expert Syst Appl 41:3965–3974

    Google Scholar 

  43. 43.

    Montazer GA, Giveki D (2015) An improved radial basis function neural network for object image retrieval. Neurocomput. 168:221–233

    Google Scholar 

  44. 44.

    Ranganath HS, Kuntimad G (1999) Object detection using pulse coupled neural networks. IEEE Trans Neural Netw 10:615–620

    Google Scholar 

  45. 45.

    Reitboeck HJ, Eckhorn R, Arndt M, Dicke P (1990) A model for feature linking via correlated neural activity. Springer Berl Heidelb 45:112–125

    Google Scholar 

  46. 46.

    Sahoo PK, Soltani S, Wong AKC (1988) A survey of Thresholding techniques. Compu Vision Graphics Image Process 41:233–260

    Google Scholar 

  47. 47.

    Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325

    MathSciNet  MATH  Google Scholar 

  48. 48.

    Vania M, Mureja D, Lee D (2019) Automatic spine segmentation from CT images using convolutional neural network via redundant generation of class labels. J Comput Des Eng 6:224–232

    Google Scholar 

  49. 49.

    Wang Z, Ma Y, Cheng F, Yang L (2010) Review of pulse-coupled neural networks. Image Vis Comput 28:5–13

    Google Scholar 

  50. 50.

    Wu CD, Liu ZG, Jiang H (2016) Catenary image segmentation using the simplified PCNN with adaptive parameters. Opt 157:914–923

    Google Scholar 

  51. 51.

    Xin L, Zheng Q, Li PD (2017) Data embedding in digital images using critical functions [J]. Signal Process Image Commun 58:146–156

    Google Scholar 

  52. 52.

    Xu X, Liang T, Wang G, et al. (2016) Self-adaptive PCNN based on the ACO algorithm and its application on medical image segmentation. Intell Autom Soft Comput pp: 1–8.

  53. 53.

    Yang N, Chen H, Yanfeng LI et al (2012) Coupled parameter optimization of PCNN model and vehicle image segmentation. J Transp Syst Eng Inf Technol 12:48–54

    Google Scholar 

  54. 54.

    Yi-De MA, Ruo-Lan D, Lian LI (2012) Automated image segmentation using pulse coupled neural networks and image’s entropy. J China Inst Commun 23:46–50

    Google Scholar 

  55. 55.

    Zhan K, Shi J, Wang H, Xie Y, Li Q (2017) Computational mechanisms of pulse-coupled neural networks: a comprehensive review. Arch Comput Methods Eng 24:573–588

    MathSciNet  MATH  Google Scholar 

  56. 56.

    Zhang T, El-Latif A A A, Wang N, et al. (2012) A new image segmentation method via fusing NCut eigenvectors maps[C]// ICDIP,8334: 1-4.

  57. 57.

    Zhang TJ, Han Q, Ahmed A, El-Lat A et al (2013) 2-D cartoon character detection based on scalable-shape context and hough voting. J Inf Technol 12(12):2342–2349

    Google Scholar 

  58. 58.

    Zhang H, Tang Z, Xie Y, Gao X, Chen Q (2019) A watershed segmentation algorithm based on an optimal marker for bubble size measurement. Meas 138:182–193

    Google Scholar 

  59. 59.

    Zhao C, Shao G, Ma L, Zhang X (2014) Image fusion algorithm based on redundant-lifting NSWMDA and adaptive PCNN. Opt- Int J Light Electron Opt 125:6247–6255

    Google Scholar 

  60. 60.

    Zhen FS, Li YY, Ahmed A et al (2012) Skeleton modulated topological perception map for rapid viewpoint selection[J]. IEICE Trans Inf Syst E95-D(10):2585–2588

    Google Scholar 

  61. 61.

    Zou BJ, Zhou HY, Chen ZL, Chen H, Xin GJ (2012) PCNN based welding seam image segmentation algorithm. Applied Mechanics & Materials 155-156:861–866

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

Funding

This work was supported by the Fundamental Research Funds for the Central Universities(2572019BF04), the Northeast Forestry University Horizontal Project (43217002, 43217005, 43219002).

Author information

Affiliations

Authors

Contributions

H.J. contributed to the idea of this paper; X.P., L.K.,Y. L. and Z. J. performed the experiments; L.K. and K. S. wrote the paper; H.J. contributed to the revision of this paper; X.P. did the mapping; H.J. provided fund support.

Corresponding author

Correspondence to Heming Jia.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Peng, X., Kang, L. et al. Pulse coupled neural network based on Harris hawks optimization algorithm for image segmentation. Multimed Tools Appl (2020). https://doi.org/10.1007/s11042-020-09228-3

Download citation

Keywords

  • Image segmentation
  • Pulse coupled neural network
  • Harris hawks optimization
  • Mutual information entropy
  • Image entropy