A bibliometric and visual analysis of artificial intelligence technologies-enhanced brain MRI research


With the advances and development of imaging and computer technologies, the application of artificial intelligence (AI) in the processing of magnetic resonance imaging (MRI) data has become a significant research field. Based on 2572 research articles concerning AI-enhanced brain MRI processing, this study provides a latent Dirichlet allocation based bibliometric analysis for the exploration of the status, trends, major research issues, and potential future directions of the research field. The trend analyses of articles and citations demonstrate a flourishing and increasing impact of the research. Neuroimage is the most prolific and influential journal. The USA and University College London have contributed the most to the research. The collaboration between European countries is very close. Essential research issues such as Image segmentation, Mental disorder, Functional network connectivity, and Alzheimer’s disease have been uncovered. Potential inter-topic research directions such as Functional network connectivity and Mental disorder, Image segmentation and Image classification, Cognitive impairment and Diffusion imaging, as well as Sense and memory and Emotion and feedback, have been highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.



  1. 1.

    Agirre-Arrizubieta Z, Huiskamp G, Ferrier C, Van Huffelen A, Leijten F (2009) Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 132(11):3060–3071

    Article  Google Scholar 

  2. 2.

    Ahmadvand A, Daliri MR (2015) Improving the runtime of MRF based method for MRI brain segmentation. Appl Math Comput 256:808–818

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Algunaid RF, Algumaei AH, Rushdi MA, Yassine IA (2018) Schizophrenic patient identification using graph-theoretic features of resting-state fMRI data. Biomedical Signal Processing and Control 43:289–299

    Google Scholar 

  4. 4.

    Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676

    Article  Google Scholar 

  5. 5.

    Altameem T, Zanaty E, Tolba A (2015) A new fuzzy C-means method for magnetic resonance image brain segmentation. Connect Sci 27(4):305–321

    Article  Google Scholar 

  6. 6.

    Andersson P, Ramsey NF, Raemaekers M, Viergever MA, Pluim JP (2012) Real-time decoding of the direction of covert visuospatial attention. J Neural Eng 9(4):045004

    Article  Google Scholar 

  7. 7.

    Bae Y, Kumarasamy K, Ali IM, Korfiatis P, Akkus Z, Erickson BJ (2018) Differences between schizophrenic and normal subjects using network properties from fMRI. J Digit Imaging 31(2):252–261

    Article  Google Scholar 

  8. 8.

    Balafar MA, Ramli AR, Saripan MI, Mashohor S (2010) Review of brain MRI image segmentation methods. Artif Intell Rev 33(3):261–274

    Article  Google Scholar 

  9. 9.

    Baldauf D, Desimone R (2014) Neural mechanisms of object-based attention. Science 344(6182):424–427

    Article  Google Scholar 

  10. 10.

    Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media

  11. 11.

    Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022

    MATH  Google Scholar 

  12. 12.

    Bollmann S, Rasmussen KGB, Kristensen M, Blendal RG, Østergaard LR, Plocharski M, O'Brien K, Langkammer C, Janke A, Barth M (2019) DeepQSM-using deep learning to solve the dipole inversion for quantitative susceptibility mapping. NeuroImage 195:373–383

    Article  Google Scholar 

  13. 13.

    Brambilla P, Hardan A, Di Nemi SU, Perez J, Soares JC, Barale F (2003) Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull 61(6):557–569

    Article  Google Scholar 

  14. 14.

    Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Prog Biomed 104(3):e158–e177

    Article  Google Scholar 

  15. 15.

    Cabral C, Kambeitz-Ilankovic L, Kambeitz J, Calhoun VD, Dwyer DB, Von Saldern S, Urquijo MF, Falkai P, Koutsouleris N (2016) Classifying schizophrenia using multimodal multivariate pattern recognition analysis: evaluating the impact of individual clinical profiles on the neurodiagnostic performance. Schizophr Bull 42(suppl_1):S110–S117

    Article  Google Scholar 

  16. 16.

    Cai K, Xu H, Guan H, Zhu W, Jiang J, Cui Y, Zhang J, Liu T, Wen W (2017) Identification of early-stage Alzheimer's disease using Sulcal morphology and other common neuroimaging indices. PLoS One 12(1):e0170875

    Article  Google Scholar 

  17. 17.

    Cai C, Wang C, Zeng Y, Cai S, Liang D, Wu Y, Chen Z, Ding X, Zhong J (2018) Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network. Magn Reson Med 80(5):2202–2214

    Article  Google Scholar 

  18. 18.

    Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M, Chalak L, Bi Y, Rollins N, Dong Q (2017) Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cereb Cortex 27(3):1949–1963

    Google Scholar 

  19. 19.

    Chen Y, Yang W, Long J, Zhang Y, Feng J, Li Y, Huang B (2015) Discriminative analysis of Parkinson’s disease based on whole-brain functional connectivity. PLoS One 10(4)

  20. 20.

    Chen M, Yan Q, Qin M (2017) A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field. Computer Assisted Surgery 22(sup1):200–211

    Article  Google Scholar 

  21. 21.

    Chen X, Xie H, Wang FL, Liu Z, Xu J, Hao T (2018) A bibliometric analysis of natural language processing in medical research. BMC Medical Informatics and Decision Making 18(1):14

    Article  Google Scholar 

  22. 22.

    Chen X, Ding R, Xu K, Wang S, Hao T, Zhou Y (2018) A bibliometric review of natural language processing empowered mobile computing. Wirel Commun Mob Comput 2018:1827074

    Google Scholar 

  23. 23.

    Chen X, Liu Z, Wei L, Yan J, Hao T, Ding R (2018) A comparative quantitative study of utilizing artificial intelligence on electronic health records in the USA and China during 2008-2017. BMC Medical Informatics and Decision Making 18(5):117

    Article  Google Scholar 

  24. 24.

    Chen X, Zhang X, Xie H, Wang FL, Yan J, Hao T (2019) Trends and features of human brain research using artificial intelligence techniques: a bibliometric approach. In: International workshop on human brain and artificial intelligence. Springer, pp 69–83

  25. 25.

    Chen X, Yu G, Cheng G, Hao T (2019) Research topics, author profiles, and collaboration networks in the top-ranked journal on educational technology over the past 40 years: a bibliometric analysis. Journal of Computers in Education:1–23

  26. 26.

    Chen X, Wang S, Tang Y, Hao T (2019) A bibliometric analysis of event detection in social media. Online Inf Rev 43(1):29–52

    Article  Google Scholar 

  27. 27.

    Chen X, Lun Y, Yan J, Hao T, Weng H (2019) Discovering thematic change and evolution of utilizing social media for healthcare research. BMC Medical Informatics and Decision Making 19(2):50

    Article  Google Scholar 

  28. 28.

    Chen S, Ding C, Liu M (2019) Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn 88:90–100

    Article  Google Scholar 

  29. 29.

    Chen X, Zou D, Cheng G, Xie H (2020) Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: a retrospective of all volumes of computer & education. Comput Educ 15:103855. https://doi.org/10.1016/j.compedu.2020.103855

    Article  Google Scholar 

  30. 30.

    Chen X, Zou D, Xie H (2020) Fifty years of British Journal of educational technology: a topic modeling based bibliometric perspective. Br J Educ Technol. https://doi.org/10.1111/bjet.12907

  31. 31.

    Chen Y, Jakary A, Avadiappan S, Hess CP, Lupo JM (2020) Qsmgan: improved quantitative susceptibility mapping using 3d generative adversarial networks with increased receptive field. NeuroImage 207:116389

    Article  Google Scholar 

  32. 32.

    Cheng H, Newman S, Goñi J, Kent JS, Howell J, Bolbecker A, Puce A, O'Donnell BF, Hetrick WP (2015) Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res 168(1–2):345–352

    Article  Google Scholar 

  33. 33.

    Cheng B, Liu M, Shen D, Li Z, Zhang D, Initiative ADN (2017) Multi-domain transfer learning for early diagnosis of Alzheimer’s disease. Neuroinformatics 15(2):115–132

    Article  Google Scholar 

  34. 34.

    Cherubini A, Morelli M, Nisticó R, Salsone M, Arabia G, Vasta R, Augimeri A, Caligiuri ME, Quattrone A (2014) Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy. Mov Disord 29(2):266–269

    Article  Google Scholar 

  35. 35.

    Chong CD, Gaw N, Fu Y, Li J, Wu T, Schwedt TJ (2017) Migraine classification using magnetic resonance imaging resting-state functional connectivity data. Cephalalgia 37(9):828–844

    Article  Google Scholar 

  36. 36.

    Codari M, Schiaffino S, Sardanelli F, Trimboli RM (2019) Artificial intelligence for breast MRI in 2008–2018: a systematic mapping review. Am J Roentgenol 212(2):280–292

    Article  Google Scholar 

  37. 37.

    Deraeve J, Alexander WH (2018) Fast, accurate, and stable feature selection using neural networks. Neuroinformatics 16(2):253–268

    Article  Google Scholar 

  38. 38.

    Di Plinio S, Ebisch SJ (2018) Brain network profiling defines functionally specialized cortical networks. Hum Brain Mapp 39(12):4689–4706

    Article  Google Scholar 

  39. 39.

    Diekhof EK, Ratnayake M (2016) Menstrual cycle phase modulates reward sensitivity and performance monitoring in young women: preliminary fMRI evidence. Neuropsychologia 84:70–80

    Article  Google Scholar 

  40. 40.

    Duchesne S, Caroli A, Geroldi C, Collins DL, Frisoni GB (2009) Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. Neuroimage 47(4):1363–1370

    Article  Google Scholar 

  41. 41.

    Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM, Brammer MJ, Murphy C, Murphy DG, Consortium MA (2010) Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49(1):44–56

    Article  Google Scholar 

  42. 42.

    Eklund A, Lindquist MA, Villani M (2017) A Bayesian heteroscedastic GLM with application to fMRI data with motion spikes. NeuroImage 155:354–369

    Article  Google Scholar 

  43. 43.

    Falkai P, Schmitt A, Andreasen N (2018) Forty years of structural brain imaging in mental disorders: is it clinically useful or not? Dialogues Clin Neurosci 20(3):179

    Article  Google Scholar 

  44. 44.

    Fang D, Yang H, Gao B, Li X (2018) Discovering research topics from library electronic references using latent Dirichlet allocation. Library Hi Tech 36:400–410

    Article  Google Scholar 

  45. 45.

    Feis RA, Bouts MJ, Panman JL, Jiskoot LC, Dopper EG, Schouten TM, de Vos F, van der Grond J, van Swieten JC, Rombouts SA (2018) Single-subject classification of presymptomatic frontotemporal dementia mutation carriers using multimodal MRI. NeuroImage: Clinical 20:188–196

    Article  Google Scholar 

  46. 46.

    Focke NK, Helms G, Scheewe S, Pantel PM, Bachmann CG, Dechent P, Ebentheuer J, Mohr A, Paulus W, Trenkwalder C (2011) Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Hum Brain Mapp 32(11):1905–1915

    Article  Google Scholar 

  47. 47.

    Fukuma R, Yanagisawa T, Yokoi H, Hirata M, Yoshimine T, Saitoh Y, Kamitani Y, Kishima H (2018) Training in use of brain–machine Interface-controlled robotic hand improves accuracy decoding two types of hand movements. Front Neurosci 12:478

    Article  Google Scholar 

  48. 48.

    Gao L, Pan H, Li Q, Xie X, Zhang Z, Han J, Zhai X (2017) Brain medical image diagnosis based on corners with importance-values. BMC Bioinforma 18(1):505

    Article  Google Scholar 

  49. 49.

    Ge Y (2006) Multiple sclerosis: the role of MR imaging. Am J Neuroradiol 27(6):1165–1176

    Google Scholar 

  50. 50.

    Ghosh P, Mali K, Das SK (2018) Chaotic firefly algorithm-based fuzzy C-means algorithm for segmentation of brain tissues in magnetic resonance images. J Vis Commun Image Represent 54:63–79

    Article  Google Scholar 

  51. 51.

    Giger ML (2018) Machine learning in medical imaging. J Am Coll Radiol 15(3):512–520

    Article  Google Scholar 

  52. 52.

    Goubran M, Ntiri EE, Akhavein H, Holmes M, Nestor S, Ramirez J, Adamo S, Ozzoude M, Scott C, Gao F (2020) Hippocampal segmentation for brains with extensive atrophy using three-dimensional convolutional neural networks. Hum Brain Mapp 41(2):291–308

    Article  Google Scholar 

  53. 53.

    Grossman M (2010) Biomarkers in frontotemporal lobar degeneration. Curr Opin Neurol 23(6):643–648

    Article  Google Scholar 

  54. 54.

    Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences 24(2):109–117

    Article  Google Scholar 

  55. 55.

    Guo H, Liu L, Chen J, Xu Y, Jie X (2017) Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI dataset. Front Neurosci 11:639

    Article  Google Scholar 

  56. 56.

    Hacker CD, Laumann TO, Szrama NP, Baldassarre A, Snyder AZ, Leuthardt EC, Corbetta M (2013) Resting state network estimation in individual subjects. Neuroimage 82:616–633

    Google Scholar 

  57. 57.

    Han X, Fischl B (2007) Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Trans Med Imaging 26(4):479–486

    Article  Google Scholar 

  58. 58.

    Hao T, Chen X, Li G, Yan J (2018) A bibliometric analysis of text mining in medical research. Soft Comput 22(23):7875–7892

    Article  Google Scholar 

  59. 59.

    Harris LN, Ismaila N, McShane LM, Andre F, Collyar DE, Gonzalez-Angulo AM, Hammond EH, Kuderer NM, Liu MC, Mennel RG (2016) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 34(10):1134–1150

    Article  Google Scholar 

  60. 60.

    Hart H, Marquand AF, Smith A, Cubillo A, Simmons A, Brammer M, Rubia K (2014) Predictive neurofunctional markers of attention-deficit/hyperactivity disorder based on pattern classification of temporal processing. J Am Acad Child Adolesc Psychiatry 53(5):569–578. e561

    Article  Google Scholar 

  61. 61.

    Heinzel A, Stock S, Langen K-J, Müller D (2012) Cost-effectiveness analysis of amino acid PET–guided surgery for Supratentorial high-grade Gliomas. J Nucl Med 53(4):552–558

    Article  Google Scholar 

  62. 62.

    Henkelman R, Stanisz G, Graham S (2001) Magnetization transfer in MRI: a review. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 14(2):57–64

    Article  Google Scholar 

  63. 63.

    Hill D (2010) Neuroimaging to assess safety and efficacy of AD therapies. Expert Opin Investig Drugs 19(1):23–26

    Article  Google Scholar 

  64. 64.

    Hoexter MQ, Miguel EC, Diniz JB, Shavitt RG, Busatto GF, Sato JR (2013) Predicting obsessive–compulsive disorder severity combining neuroimaging and machine learning methods. J Affect Disord 150(3):1213–1216

    Article  Google Scholar 

  65. 65.

    Huang M, Yang W, Feng Q, Chen W (2017) Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease. Sci Rep 7(1):1–13

    Google Scholar 

  66. 66.

    Iqbal A, Seghouane A-K, Adalı T (2018) Shared and subject-specific dictionary learning (ShSSDL) algorithm for multisubject fMRI data analysis. IEEE Trans Biomed Eng 65(11):2519–2528

    Article  Google Scholar 

  67. 67.

    Işın A, Direkoğlu C, Şah M (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Computer Science 102:317–324

    Article  Google Scholar 

  68. 68.

    Jha D, Kim J-I, Choi M-R, Kwon G-R (2017) Pathological brain detection using Weiner filtering, 2D-discrete wavelet transform, probabilistic PCA, and random subspace ensemble classifier. Computational intelligence and neuroscience 2017:1–11

    Article  Google Scholar 

  69. 69.

    Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y (2017) Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology 2(4):230–243

    Article  Google Scholar 

  70. 70.

    Jiang M, Yuan Z, Yang X, Zhang J, Gong Y, Xia L, Li T (2019) Accelerating CS-MRI reconstruction with fine-tuning Wasserstein generative adversarial network. IEEE Access 7:152347–152357

    Article  Google Scholar 

  71. 71.

    Jie B, Zhang D, Cheng B, Shen D, Initiative AsDN (2015) Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp 36(2):489–507

    Article  Google Scholar 

  72. 72.

    Jin C, Jia H, Lanka P, Rangaprakash D, Li L, Liu T, Hu X, Deshpande G (2017) Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Hum Brain Mapp 38(9):4479–4496

    Article  Google Scholar 

  73. 73.

    Jin W, Gong F, Tian W, Fu R (2017) The segmentation of brain magnetic resonance image by adaptive fuzzy support vector machine. Journal of Medical Imaging and Health Informatics 7(2):400–406

    Article  Google Scholar 

  74. 74.

    Johnston BA, Steele JD, Tolomeo S, Christmas D, Matthews K (2015) Structural MRI-based predictions in patients with treatment-refractory depression (TRD). PLoS One 10(7):e0132958

    Google Scholar 

  75. 75.

    Jung RE, Segall JM, Jeremy Bockholt H, Flores RA, Smith SM, Chavez RS, Haier RJ (2010) Neuroanatomy of creativity. Hum Brain Mapp 31(3):398–409

    Google Scholar 

  76. 76.

    Karimaghaloo Z, Shah M, Francis SJ, Arnold DL, Collins DL, Arbel T (2012) Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. IEEE Trans Med Imaging 31(6):1181–1194

    Article  Google Scholar 

  77. 77.

    Khatami M, Schmidt-Wilcke T, Sundgren PC, Abbasloo A, Schölkopf B, Schultz T (2017) BundleMAP: anatomically localized classification, regression, and hypothesis testing in diffusion MRI. Pattern Recogn 63:593–600

    Article  Google Scholar 

  78. 78.

    Khawaldeh S, Pervaiz U, Rafiq A, Alkhawaldeh RS (2018) Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. Appl Sci 8(1):27

    Article  Google Scholar 

  79. 79.

    Koush Y, Ashburner J, Prilepin E, Sladky R, Zeidman P, Bibikov S, Scharnowski F, Nikonorov A, Van De Ville D (2017) OpenNFT: an open-source python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis. NeuroImage 156:489–503

    Google Scholar 

  80. 80.

    Kumar M, Federmeier KD, Fei-Fei L, Beck DM (2017) Evidence for similar patterns of neural activity elicited by picture-and word-based representations of natural scenes. Neuroimage 155:422–436

    Article  Google Scholar 

  81. 81.

    Lenglet C, Campbell JS, Descoteaux M, Haro G, Savadjiev P, Wassermann D, Anwander A, Deriche R, Pike GB, Sapiro G (2009) Mathematical methods for diffusion MRI processing. Neuroimage 45(1):S111–S122

    Article  Google Scholar 

  82. 82.

    Li R, Yu J, Zhang S, Bao F, Wang P, Huang X, Li J (2013) Bayesian network analysis reveals alterations to default mode network connectivity in individuals at risk for Alzheimer's disease. PLoS One

  83. 83.

    Li Z-C, Bai H, Sun Q, Li Q, Liu L, Zou Y, Chen Y, Liang C, Zheng H (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28(9):3640–3650

    Article  Google Scholar 

  84. 84.

    Li Y, Zhang H, Bermudez C, Chen Y, Landman BA, Vorobeychik Y (2020) Anatomical context protects deep learning from adversarial perturbations in medical imaging. Neurocomputing 379:370–378

    Article  Google Scholar 

  85. 85.

    Lim KY, Mandava R (2018) A multi-phase semi-automatic approach for multisequence brain tumor image segmentation. Expert Syst Appl 112:288–300

    Article  Google Scholar 

  86. 86.

    Lim L, Marquand A, Cubillo AA, Smith AB, Chantiluke K, Simmons A, Mehta M, Rubia K (2013) Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS One 8(5):e63660

    Google Scholar 

  87. 87.

    Liu Y, Chen H, Shen X, Huang Y (2018) Gamma correction FCM algorithm with conditional spatial information for image segmentation. TIIS 12(9):4336–4354

    Google Scholar 

  88. 88.

    Liu M, Li F, Yan H, Wang K, Ma Y, Shen L, Xu M, Initiative ADN (2020) A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. NeuroImage 208:116459

    Article  Google Scholar 

  89. 89.

    Lorenzetti V, Allen NB, Fornito A, Yücel M (2009) Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 117(1–2):1–17

    Article  Google Scholar 

  90. 90.

    Mann HB (1945) Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13:245–259

    MathSciNet  MATH  Article  Google Scholar 

  91. 91.

    Miwa K, Matsuo M, S-i O, Shinoda J, Yokoyama K, Yamada J, Yano H, Iwama T (2014) Re-irradiation of recurrent glioblastoma multiforme using 11 C-methionine PET/CT/MRI image fusion for hypofractionated stereotactic radiotherapy by intensity modulated radiation therapy. Radiat Oncol 9(1):181

    Article  Google Scholar 

  92. 92.

    Moed H, De Bruin R, Van Leeuwen T (1995) New bibliometric tools for the assessment of national research performance: database description, overview of indicators and first applications. Scientometrics 33(3):381–422

    Article  Google Scholar 

  93. 93.

    Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Išgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261

    Article  Google Scholar 

  94. 94.

    Mwangi B, Hasan KM, Soares JC (2013) Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage 75:58–67

    Article  Google Scholar 

  95. 95.

    Nieuwenhuis M, van Haren NE, Pol HEH, Cahn W, Kahn RS, Schnack HG (2012) Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. Neuroimage 61(3):606–612

    Article  Google Scholar 

  96. 96.

    Nomi JS, Farrant K, Damaraju E, Rachakonda S, Calhoun VD, Uddin LQ (2016) Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp 37(5):1770–1787

    Article  Google Scholar 

  97. 97.

    Park H, Yang J-j, Seo J, Lee J-m (2013) Dimensionality reduced cortical features and their use in predicting longitudinal changes in Alzheimer's disease. Neurosci Lett 550:17–22

    Article  Google Scholar 

  98. 98.

    Pereira S, Pinto A, Oliveira J, Mendrik AM, Correia JH, Silva CA (2016) Automatic brain tissue segmentation in MR images using random forests and conditional random fields. J Neurosci Methods 270:111–123

    Article  Google Scholar 

  99. 99.

    Pesapane F, Volonté C, Codari M, Sardanelli F (2018) Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights into imaging 9(5):745–753

    Article  Google Scholar 

  100. 100.

    Qiusheng L, Xiaoyu F, Baoshun S, Xiaohua Z (2020) Compressed sensing MRI based on the hybrid regularization by denoising and the epigraph projection. Signal Process 170:107444

    Article  Google Scholar 

  101. 101.

    Ranlund S, Rosa MJ, de Jong S, Cole JH, Kyriakopoulos M, Fu CH, Mehta MA, Dima D (2018) Associations between polygenic risk scores for four psychiatric illnesses and brain structure using multivariate pattern recognition. NeuroImage: Clinical 20:1026–1036

    Article  Google Scholar 

  102. 102.

    Rasero J, Aerts H, Ortega MO, Cortes JM, Stramaglia S, Marinazzo D (2018) Predicting functional networks from region connectivity profiles in task-based versus resting-state fMRI data. PLoS One 13(11):e0207385

    Article  Google Scholar 

  103. 103.

    Reichert C, Fendrich R, Bernarding J, Tempelmann C, Hinrichs H, Rieger JW (2014) Online tracking of the contents of conscious perception using real-time fMRI. Front Neurosci 8:116

    Article  Google Scholar 

  104. 104.

    Rovira À, Swanton J, Tintoré M, Huerga E, Barkhof F, Filippi M, Frederiksen JL, Langkilde A, Miszkiel K, Polman C (2009) A single, early magnetic resonance imaging study in the diagnosis of multiple sclerosis. Arch Neurol 66(5):587–592

    Article  Google Scholar 

  105. 105.

    Rubin-Falcone H, Zanderigo F, Thapa-Chhetry B, Lan M, Miller JM, Sublette ME, Oquendo MA, Hellerstein DJ, McGrath PJ, Stewart JW (2018) Pattern recognition of magnetic resonance imaging-based gray matter volume measurements classifies bipolar disorder and major depressive disorder. J Affect Disord 227:498–505

    Article  Google Scholar 

  106. 106.

    Saladi S, Amutha Prabha N (2018) MRI brain segmentation in combination of clustering methods with Markov random field. Int J Imaging Syst Technol 28(3):207–216

    Article  Google Scholar 

  107. 107.

    Sarraf S, Desouza DD, Anderson JA, Saverino C (2019) MCADNNet: recognizing stages of cognitive impairment through efficient convolutional fMRI and MRI neural network topology models. IEEE Access 7:155584–155600

    Article  Google Scholar 

  108. 108.

    Selva Bhuvaneswari K, Geetha P (2017) Segmentation and classification of brain images using firefly and hybrid kernel-based support vector machine. Journal of Experimental & Theoretical Artificial Intelligence 29(3):663–678

    Article  Google Scholar 

  109. 109.

    Serpa MH, Ou Y, Schaufelberger MS, Doshi J, Ferreira LK, Machado-Vieira R, Menezes PR, Scazufca M, Davatzikos C, Busatto GF (2014) Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1 year of diagnostic stability. Biomed Res Int 2014:1–9

    Article  Google Scholar 

  110. 110.

    Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49(1–2):1–52

    Article  Google Scholar 

  111. 111.

    Sheth D, Giger ML (2019) Artificial intelligence in the interpretation of breast cancer on MRI. J Magn Reson Imaging

  112. 112.

    Shi F, Fan Y, Tang S, Gilmore JH, Lin W, Shen D (2010) Neonatal brain image segmentation in longitudinal MRI studies. Neuroimage 49(1):391–400

    Article  Google Scholar 

  113. 113.

    Soch J, Haynes J-D, Allefeld C (2016) How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection. Neuroimage 141:469–489

    Article  Google Scholar 

  114. 114.

    Song Y, Chen X, Hao T, Liu Z, Lan Z (2019) Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput Educ 137:12–31

    Article  Google Scholar 

  115. 115.

    Stamile C, Kocevar G, Cotton F, Durand-Dubief F, Hannoun S, Frindel C, Guttmann CR, Rousseau D, Sappey-Marinier D (2016) A sensitive and automatic white matter fiber tracts model for longitudinal analysis of diffusion tensor images in multiple sclerosis. PLoS One 11(5):e0156405

    Article  Google Scholar 

  116. 116.

    Szilágyi L, Szilágyi SM, Benyó B (2012) Efficient inhomogeneity compensation using fuzzy c-means clustering models. Comput Methods Prog Biomed 108(1):80–89

    Article  Google Scholar 

  117. 117.

    Tian D, Fan L A (2007) Brain MR images segmentation method based on SOM neural network. In: 2007 1st International Conference on Bioinformatics and Biomedical Engineering. IEEE, pp 686–689

  118. 118.

    Tredinnick L (2017) Artificial intelligence and professional roles. Bus Inf Rev 34(1):37–41

    Google Scholar 

  119. 119.

    Valli I, Marquand AF, Mechelli A, Raffin M, Allen P, Seal ML, McGuire P (2016) Identifying individuals at high risk of psychosis: predictive utility of support vector machine using structural and functional Mri data. Frontiers in Psychiatry 7:52

    Article  Google Scholar 

  120. 120.

    Wallace GL, Robustelli B, Dankner N, Kenworthy L, Giedd JN, Martin A (2013) Increased gyrification, but comparable surface area in adolescents with autism spectrum disorders. Brain 136(6):1956–1967

    Article  Google Scholar 

  121. 121.

    Wang L, Hermens DF, Hickie IB, Lagopoulos J (2012) A systematic review of resting-state functional-MRI studies in major depression. J Affect Disord 142(1–3):6–12

    Article  Google Scholar 

  122. 122.

    Wang S, Zhang Y, Dong Z, Du S, Ji G, Yan J, Yang J, Wang Q, Feng C, Phillips P (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25(2):153–164

    Article  Google Scholar 

  123. 123.

    Wang P, Chen K, Yao L, Hu B, Wu X, Zhang J, Ye Q, Guo X (2016) Multimodal classification of mild cognitive impairment based on partial least squares. J Alzheimers Dis 54(1):359–371

    Article  Google Scholar 

  124. 124.

    Wang S, Lu S, Dong Z, Yang J, Yang M, Zhang Y (2016) Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection. Appl Sci 6(6):169

    Article  Google Scholar 

  125. 125.

    Wang W, Feng Y, Dai W (2018) Topic analysis of online reviews for two competitive products using latent Dirichlet allocation. Electron Commer Res Appl 29:142–156

    Article  Google Scholar 

  126. 126.

    Wang J, Hao Z, Wang H (2018) Generation of individual whole-brain atlases with resting-state fMRI data using simultaneous graph computation and Parcellation. Front Hum Neurosci 12:166

    Article  Google Scholar 

  127. 127.

    Wei H, Cao S, Zhang Y, Guan X, Yan F, Yeom KW, Liu C (2019) Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction. NeuroImage 202:116064

    Article  Google Scholar 

  128. 128.

    Wise T, Marwood L, Perkins AM, Herane-Vives A, Williams S, Young AH, Cleare AJ, Arnone D (2018) A morphometric signature of depressive symptoms in unmedicated patients with mood disorders. Acta Psychiatr Scand 138(1):73–82

    Article  Google Scholar 

  129. 129.

    Wolz R, Julkunen V, Koikkalainen J, Niskanen E, Zhang DP, Rueckert D, Soininen H, Lötjönen J, Initiative ADN (2011) Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease. PLoS One 6(10):e25446

    Article  Google Scholar 

  130. 130.

    Wu Y, Yang W, Jiang J, Li S, Feng Q, Chen W (2013) Semi-automatic segmentation of brain tumors using population and individual information. J Digit Imaging 26(4):786–796

    Article  Google Scholar 

  131. 131.

    Wu G, Kim M, Sanroma G, Wang Q, Munsell BC, Shen D, Initiative ADN (2015) Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. NeuroImage 106:34–46

    Article  Google Scholar 

  132. 132.

    Wu J-W, Hseu S-S, Fuh J-L, Lirng J-F, Wang Y-F, Chen W-T, Chen S-P, Wang S-J (2017) Factors predicting response to the first epidural blood patch in spontaneous intracranial hypotension. Brain 140(2):344–352

    Google Scholar 

  133. 133.

    Wu X, Wu T, Liu C, Wen X, Yao L (2017) Frequency clustering analysis for resting state functional magnetic resonance imaging based on Hilbert-Huang transform. Front Hum Neurosci 11:61

    Article  Google Scholar 

  134. 134.

    Yin X-B, Tan Z-H, Yang R, Guo X (2017) Single crystalline SrTiO 3 as memristive model system: from materials science to neurological and psychological functions. J Electroceram 39(1–4):210–222

    Article  Google Scholar 

  135. 135.

    Zang W, Wang Z, Jiang D, Liu X, Jiang Z (2018) Classification of MRI brain images using DNA genetic algorithms optimized Tsallis entropy and support vector machine. Entropy 20(12):964

    Article  Google Scholar 

  136. 136.

    Zhan Y, Chen K, Wu X, Zhang D, Zhang J, Yao L, Guo X (2015) Identification of conversion from normal elderly cognition to Alzheimer’s disease using multimodal support vector machine. J Alzheimers Dis 47(4):1057–1067

    Google Scholar 

  137. 137.

    Zhang T (2018) Optimized fuzzy clustering algorithms for brain MRI image segmentation based on local Gaussian probability and anisotropic weight models. Int J Pattern Recognit Artif Intell 32(09):1857005

    MathSciNet  Article  Google Scholar 

  138. 138.

    Zhang D, Wang Y, Zhou L, Yuan H, Shen D, Initiative ADN (2011) Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 55(3):856–867

    Article  Google Scholar 

  139. 139.

    Zhang Y-D, Wu L, Wang S (2011) Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog Electromagn Res 116:65–79

    Article  Google Scholar 

  140. 140.

    Zhang D, Shen D, Initiative ADN (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage 59(2):895–907

    Article  Google Scholar 

  141. 141.

    Zhang T, Xia Y, Feng DD (2014) A clonal selection based approach to statistical brain voxel classification in magnetic resonance images. Neurocomputing 134:122–131

    Article  Google Scholar 

  142. 142.

    Zhang YD, Chen S, Wang SH, Yang JF, Phillips P (2015) Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int J Imaging Syst Technol 25(4):317–327

    Article  Google Scholar 

  143. 143.

    Zhang J, Liu W, Zhang J, Wu Q, Gao Y, Jiang Y, Gao J, Yao S, Huang B (2018) Distinguishing adolescents with conduct disorder from typically developing youngsters based on pattern classification of brain structural MRI. Front Hum Neurosci 12:152

    Article  Google Scholar 

  144. 144.

    Zhang J, Zhang C, Yao L, Zhao X, Long Z (2018) Brain state decoding based on fmri using semisupervised sparse representation classifications. Computational intelligence and neuroscience 2018:3956536

    Google Scholar 

  145. 145.

    Zhang S, Dong Q, Zhang W, Huang H, Zhu D, Liu T (2019) Discovering hierarchical common brain networks via multimodal deep belief network. Med Image Anal 54:238–252

    Article  Google Scholar 

  146. 146.

    Zia R, Akhtar P, Aziz A (2018) A new rectangular window based image cropping method for generalization of brain neoplasm classification systems. Int J Imaging Syst Technol 28(3):153–162

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tianyong Hao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, X., Xie, H. et al. A bibliometric and visual analysis of artificial intelligence technologies-enhanced brain MRI research. Multimed Tools Appl 80, 17335–17363 (2021). https://doi.org/10.1007/s11042-020-09062-7

Download citation


  • Magnetic resonance imaging
  • Artificial intelligence
  • Latent Dirichlet allocation
  • Research topics