Skip to main content

Advertisement

Log in

Evolutionary correlation filtering based on pseudo-bacterial genetic algorithm for pose estimation of highly occluded targets

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

An accurate method based on evolutionary correlation filtering to solve pose estimation of highly occluded targets is presented. The proposed method performs multiple correlation operations between an input scene and a bank of filters designed in frequency-domain. Each filter is computed with statistical parameters of a real-world scene and a template that contains information of the target in a single pose parameter configuration. A vast set of templates is generated from multiple views of a three-dimensional model of the target, which are created synthetically with computer graphics. An evolutionary approach in the bank of filter construction for optimizing the pose estimation parameters is implemented. The evolutionary computation technique based on a pseudo-bacterial genetic algorithm yields high estimation accuracy finding the best filter that produces the highest matching score. The proposed evolutionary correlation filtering yields good convergence of the bank of filter optimization, which produces a reduction of the number of computational operations. Experimental results demonstrate the robustness of the proposed method in terms of detection performance and pose estimation of highly occluded targets compared with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aguilar-González P, Kober V (2008) Correlation filters for pattern recognition using a noisy reference. In: Ruiz-shulcloper J, Kropatsch WG (eds) Progress in pattern recognition, image analysis and applications, LNCS, vol 5197. Springer, Berlin Heidelberg, pp 38–45

  2. Al-Obaydy W, Suandi S (2020) Automatic pose normalization for open-set single-sample face recognition in video surveillance. Multi Tools Appl 79:1573–7721. https://doi.org/10.1007/s11042-019-08414-2

    Article  Google Scholar 

  3. Altenberg L (2016) Evolutionary computation. In: Kliman RM (ed) Encyclopedia of evolutionary biology. Academic Press, Oxford, pp 40–47, DOI https://doi.org/10.1016/B978-0-12-800049-6.00307-3, (to appear in print)

  4. Belhaj Soulami K, Kaabouch N, Saidi M, Tamtaoui A (2020) An evaluation and ranking of evolutionary algorithms in segmenting abnormal masses in digital mammograms. Multi Tools Appl 1573–7721 https://doi.org/10.1007/s11042-019-08449-5

  5. Blum L (2004) Computing over the reals: Where Turing meets Newton. Notices Amer Math Soc 51(9):1024–1034

    MathSciNet  MATH  Google Scholar 

  6. Botzheim J, Gál L, Kóczy LT (2009) Fuzzy rule base model identification by bacterial memetic algorithms. In: Rakus-Andersson E, Yager RR, Ichalkaranje N, Jain LC (eds) Recent advances in decision making. Springer, Berlin Heidelberg, pp 21–43, DOI https://doi.org/10.1007/978-3-642-02187-9_3, (to appear in print)

  7. Botzheim J, Toda Y, Kubota N (2012) Bacterial memetic algorithm for offline path planning of mobile robots. Memetic Comput 4(1):73–86. https://doi.org/10.1007/s12293-012-0076-0

    Article  Google Scholar 

  8. Castro O, Diaz-Ramirez VH, Diaz-Ramirez A, Kober V (2009) Improvement of pattern recognition with a heuristic design of correlation filters Proc. SPIE 7442, optics and photonics for information processing III, p. 744217, DOI https://doi.org/10.1117/12.826639, (to appear in print)

  9. Diaz-Ramirez VH, Cuevas A, Kober V, Trujillo L, Awwal A (2015) Pattern recognition with composite correlation filters designed with multi-objective combinatorial optimization. Opt Commun 338:77–89. https://doi.org/10.1016/j.optcom.2014.10.038

    Article  Google Scholar 

  10. Diaz-Ramirez VH, Picos K, Kober V (2014) Target tracking in nonuniform illumination conditions using locally adaptive correlation filters. Opt Commun 323:32–43. https://doi.org/10.1016/j.optcom.2014.02.063

    Article  Google Scholar 

  11. Diaz-Ramirez VH, Trujillo L, Pinto-Fernandez S (2012) Advances in adaptive composite filters for object recognition. In: Kypraios I (ed) Advances in object recognition systems, chap. 5, pp. 91–110. Intechopen, DOI https://doi.org/10.5772/35708, (to appear in print)

  12. Fogel DB (1998) Evolutionary Computation: The Fossil Record, chap. An Introduction to Evolutionary Computation, pp. 656– wiley-IEEE Press

  13. Furuhashi T, Miyata Y, Nakaoka K, Uchikawa Y (1995) A new approach to genetic based machine learning and an efficient finding of fuzzy rules. In: Furuhashi T (ed) Advances in fuzzy logic, neural networks and genetic algorithms. Springer, Berlin Heidelberg, pp 173–189, DOI https://doi.org/10.1007/3-540-60607-6_12, (to appear in print)

  14. Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-completeness, W.H.freeman, New York

  15. Hare S, Golodetz S, Saffari A, Vineet V, Cheng M, Hicks SL, Torr PHS (2016) Struck: Structured output tracking with kernels. IEEE Trans Patt Anal Mach Intell 38(10):2096–2109

    Article  Google Scholar 

  16. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Patt Anal Mach Intell 37(3):583–596. https://doi.org/10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  17. Huang Y, Zhao Z, Wu B, Mei Z, Cui Z, Gao G (2019) Visual object tracking with discriminative correlation filtering and hybrid color feature. Multi Tools Appl 78:1573–7721. https://doi.org/10.1007/s11042-019-07901-w

    Article  Google Scholar 

  18. Javidi B, Wang J (1994) Design of filters to detect a noisy target in nonoverlapping background noise. J Opt Soc Am A 11:2604–2612

    Article  Google Scholar 

  19. Javidi B, Wang J (1997) Optimum filter for detecting a target in multiplicative noise and additive noise. J Opt Soc Am A 14(4):836–844. https://doi.org/10.1364/JOSAA.14.000836

    Article  Google Scholar 

  20. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Patt Anal Mach Intell 34(7):1409–1422. https://doi.org/10.1109/TPAMI.2011.239

    Article  Google Scholar 

  21. Kober V, Campos J (1996) Accuracy of location measurement of a noisy target in a nonoverlapping background. J Opt Soc Am A 13(8):1653–1666

    Article  Google Scholar 

  22. Kramer O (2017) Genetic Algorithms, Studies in Computational Intelligence, vol. 679 Springer International Publishing https://doi.org/10.1007/978-3-319-52156-5_2

  23. Liu W, Wu S, Wu X (2018) Pose estimation method for planar mirror based on one-dimensional target. Optical Engineering 57(7):1–10–10. https://doi.org/10.1117/1.OE.57.7.073101

    Article  Google Scholar 

  24. Montiel O, Díaz F (2015) Reducing the size of combinatorial optimization problems using the operator vaccine by fuzzy selector with adaptive heuristics. Math Probl Eng 2015(713043):1–14. https://doi.org/10.1155/2015/713043

    Article  MATH  Google Scholar 

  25. Nawa NE, Furuhashi T, Hashiyama T, Uchikawa Y (1999) A study on the discovery of relevant fuzzy rules using pseudobacterial genetic algorithm. IEEE Trans Ind Electron 46(6):1080–1089. https://doi.org/10.1109/41.807990

    Article  Google Scholar 

  26. Nawa NE, Hashiyama T, Furuhashi T, Uchikawa Y (1997) A study on fuzzy rules discovery using pseudo-bacterial genetic algorithm with adaptive operator. In: IEEE International conference on evolutionary computation, pp 589–593, DOI https://doi.org/10.1109/ICEC.1997.592379, (to appear in print)

  27. Newell M (2019) Utah teapot 3D digital model. https://www.thingiverse.com/thing:852078 (1975). Online; accessed 24

  28. Orozco-Rosas U, Montiel O, Sepúlveda R (2015) Pseudo-bacterial potential field based path planner for autonomous mobile robot navigation. Int J Adv Robot Syst 12(7):81. https://doi.org/10.5772/60715

    Article  Google Scholar 

  29. Orozco-Rosas U, Montiel O, Sepúlveda R (2017) An optimized GPU implementation for a path planning algorithm based on parallel pseudo-bacterial potential field. In: melin P, Castillo O, Kacprzyk J (eds) Nature-Inspired Design of Hybrid Intelligent Systems, Studies in Computational Intelligence, vol. 667, chap. 31, pp. 477–492. Springer International Publishing, DOI https://doi.org/10.1007/978-3-319-47054-2, (to appear in print)

  30. Orozco-Rosas U, Picos K, Diaz-Ramirez VH, Montiel O, Sepúlveda R (2017) Visual environment recognition for robot path planning using template matched filters. In: Optics and photonics for information processing XI, vol 10395, DOI https://doi.org/10.1117/12.2273596

  31. Orozco-Rosas U, Picos K, Montiel O (2019) Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots. IEEE Access 7:156787–156803. https://doi.org/10.1109/ACCESS.2019.2949835

    Article  Google Scholar 

  32. Phong BT (1975) Illumination for computer generated pictures. Commun ACM 18(6):311–317. https://doi.org/10.1145/360825.360839

    Article  Google Scholar 

  33. Picos K, Diaz-Ramirez VH, Kober V, Montemayor AS, Pantrigo JJ (2016) Accurate three-dimensional pose recognition from monocular images using template matched filtering. Opt Eng 55(6):063102. https://doi.org/10.1117/1.OE.55.6.063102

    Article  Google Scholar 

  34. Picos K, Diaz-Ramirez VH, Montemayor AS, Pantrigo JJ, Kober V (2018) Three-dimensional pose tracking by image correlation and particle filtering. Opt Eng 57(7):073108. https://doi.org/10.1117/1.OE.57.7.073108

    Article  Google Scholar 

  35. Picos K, Orozco-Rosas U, Diaz-Ramirez V (2019) Demonstrating the robustness of frequency-domain correlation filters for 3D object recognition applications. In: Iftekharuddin KM, Awwal AAS, Diaz-Ramirez VH, Márquez A (eds) Optics and photonics for information processing XIII, vol 11136. International Society for Optics and Photonics, SPIE, pp 164–173. https://doi.org/10.1117/12.2528944

  36. Picos K, Orozco-Rosas U, Diaz-Ramirez VH, Montiel O (2018) Pose estimation in noncontinuous video sequences using evolutionary correlation filtering. Math Probl Eng 2018(5798696):13. https://doi.org/10.1155/2018/5798696

    Article  Google Scholar 

  37. Qian C, Cai X, Zhu J, Xu Y, Tang Z, Li C (2019) Learning large margin support correlation filter for visual tracking. J Elect Imaging 28(3):1–13–13. https://doi.org/10.1117/1.JEI.28.3.033024

    Article  Google Scholar 

  38. Ruchay A, Kober V (2016) A correlation-based algorithm for recognition and tracking of partially occluded objects. Proc SPIE 9971:1 –9. https://doi.org/10.1117/12.2237335

    Article  Google Scholar 

  39. Ruchay A, Kober V, Gonzalez-Fraga JA (2018) Reliable recognition of partially occluded objects with correlation filters. Math Probl Eng 2018(8284123):1–8. https://doi.org/10.1155/2018/8284123

    Article  Google Scholar 

  40. Sang G, He F, Zhu R, Xuan S (2017) Learning toward practical head pose estimation. Opt Eng 56(8):1–11–11. https://doi.org/10.1117/1.OE.56.8.083104

    Article  Google Scholar 

  41. Seong Y, Choi T (2000) Optimal-trade-off filters for noise robustness, peak sharpness, and light efficiency in nonoverlapping background noise. Opt Eng 39 (2):472–477

    Article  MathSciNet  Google Scholar 

  42. Szeliski R (2010) Computer Vision: Algorithms and Applications, 1st edn. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  43. Turk G, Levoy M (2020) Stanford bunny 3D digital model. http://graphics.stanford.edu/data/3Dscanrep (1994). Online; accessed 29

  44. Vijaya-Kumar BVK (1992) Tutorial survey of composite filter designs for optical correlators. Appl Opt 31:4773–4801

    Article  Google Scholar 

  45. Vijaya-Kumar BVK, Mahalanobis A, Juday RD (2005) Correlation pattern recognition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  46. Wang Z, Zhang F, Chen Y, Ma S (2018) Long-term visual tracking based on adaptive correlation filters. J Electron Imaging 27 (5 ):1–14. https://doi.org/10.1117/1.JEI.27.5.053018

    Article  Google Scholar 

  47. Wang Z, Zhang F, Chen Y, Ma S (2018) Long-term visual tracking based on adaptive correlation filters. J Elect Imaging 27(5 ):1–14. https://doi.org/10.1117/1.JEI.27.5.053018

    Article  Google Scholar 

  48. Wu X, Wu N (2013) Computationally efficient iterative pose estimation for space robot based on vision. J Robotics 2013(692838):1–7. https://doi.org/10.1155/2013/692838

    Article  Google Scholar 

  49. Wu Y, Lim J, Yang M (2013) Online object tracking: a benchmark. In: 2013 IEEE Conference on computer vision and pattern recognition, pp 2411–2418, DOI https://doi.org/10.1109/CVPR.2013.312, (to appear in print)

  50. Wu Y, Lim J, Yang MH (2020) Visual tracker benchmark. http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html (2013). Online; accessed 29

  51. Yu J, Sun J (2018) Multispectral embedding-based deep neural network for three-dimensional human pose recovery. Opt Eng 57 (1 ):1–16–16. https://doi.org/10.1117/1.OE.57.1.013107

    Article  MathSciNet  Google Scholar 

  52. Zhang D, Miao Z, Chen S, Wan L (2013) Optimization and soft constraints for human shape and pose estimation based on a 3D morphable model. Math Probl Eng 2013(715808):1–8. https://doi.org/10.1155/2013/715808

    Article  Google Scholar 

  53. Zhang K, Zhang L, Liu Q, Zhang D, Yang MH (2014) Fast visual tracking via dense spatio-temporal context learning. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision – ECCV 2014. Springer International Publishing, Cham, pp 127–141

  54. Zhang L, Wang Y, Sun H, Yao Z, He S (2015) Robust visual correlation tracking. Math Probl Eng 2015(238971):1–13. https://doi.org/10.1155/2015/238971

    Article  Google Scholar 

  55. Zhu G, Wang J, Wu Y, Lu H (2015) Collaborative correlation tracking. In: Xie X, Jones M, Tam G (eds) Proceedings of the BritishMachine Vision Conference (BMVC), vol 184. BMVA Press, New York, pp 1–184.12. https://doi.org/10.5244/C.29.184

Download references

Acknowledgements

This work was supported by the Coordinación Institucional de Investigación of CETYS Universidad, and by Consejo Nacional de Ciencia y Tecnología (CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenia Picos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picos, K., Orozco-Rosas, U. Evolutionary correlation filtering based on pseudo-bacterial genetic algorithm for pose estimation of highly occluded targets. Multimed Tools Appl 80, 23051–23072 (2021). https://doi.org/10.1007/s11042-020-08991-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08991-7

Keywords

Navigation