Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: A system for large-scale machine learning. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pp 265–283
Alsheikh M A, Selim A, Niyato D, Doyle L, Lin S, Tan HP (2016) Deep activity recognition models with triaxial accelerometers. In: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence
Angeli A, Riedel N, Marfia G (2019) Data science models. http://shorturl.at/asxF0
Athey S (2018) The impact of machine learning on economics In: The economics of artificial intelligence: An agenda, University of Chicago Press
Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: International conference on pervasive computing. Springer, pp 1–17
Bayat A, Pomplun M, Tran D A (2014) A study on human activity recognition using accelerometer data from smartphones. Procedia Comput Sci 34:450–457
Article
Google Scholar
Bohanec M, MK Borštnar, Robnik-Šikonja M (2017) Explaining machine learning models in sales predictions. Expert Syst Appl 71:416–428
Article
Google Scholar
Bujari A, Licar B, Palazzi C E (2011) Road crossing recognition through smartphone’s accelerometer. In: 2011 IFIP Wireless Days (WD). IEEE, pp 1–3
Bujari A, Licar B, Palazzi C E (2012) Movement pattern recognition through smartphone’s accelerometer. In: 2012 IEEE Consumer Communications and Networking Conference (CCNC) IEEE, pp 502–506
Buscher G, Dumais ST, Cutrell E (2010) The good, the bad, and the random: an eye-tracking study of ad quality in web search. In: Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval. ACM, pp 42–49
Chen Y, Xue Y (2015) A deep learning approach to human activity recognition based on single accelerometer. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, pp 1488–1492
Chen D, Bellamy RK, Malkin PK, Erickson T (2016) Diagnostic visualization for non-expert machine learning practitioners: A design study. In: 2016 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp 87–95
Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879
Article
Google Scholar
Cook D, Feuz K D, Krishnan N C (2013) Transfer learning for activity recognition: a survey. Knowl Inform Syst 36(3):537–556
Article
Google Scholar
Crisci C, Ghattas B, Perera G (2012) A review of supervised machine learning algorithms and their applications to ecological data. Ecol Model 240:113–122
Article
Google Scholar
Dems~ar J, Zupan B, Leban G, Curk T (2004) Orange: From experimental machine learning to interactive data mining. In: European Conference on Principles of Data Mining and Knowledge Discovery. Springer, pp 537–539
Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M, Toplak M, Starič A et al (2013) Orange: data mining toolbox in python. J Mach Learn Res 14(1):2349–2353
MATH
Google Scholar
Fatima M, Pasha M (2017) Survey of machine learning algorithms for disease diagnostic. J Intell Learn Syst Appl 9(01):1
Google Scholar
Faust O, Hagiwara Y, Hong T J, Lih O S, Acharya U R (2018) Deep learning for healthcare applications based on physiological signals: a review. Comput Methods Programs Biomed 161:1–13
Article
Google Scholar
Fillbrunn A, Dietz C, Pfeuffer J, Rahn R, Landrum G A, Berthold M R (2017) Knime for reproducible cross-domain analysis of life science data. J Biotechnol 261:149–156
Article
Google Scholar
García M, Domínguez C, Heras J, Mata E, Pascual V (2018) An on-going framework for easily experimenting with deep learning models for bioimaging analysis. In: International Symposium on Distributed Computing and Artificial Intelligence. Springer, pp 330–333
Guyon I, Chaabane I, Escalante HJ, Escalera S, Jajetic D, Lloyd JR, Macià N, Ray B, Romaszko L, Sebag M et al (2016) A brief review of the chalearn automl challenge: any-time any-dataset learning without human intervention. In: Workshop on Automatic Machine Learning, pp 21–30
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I H (2009) The weka data mining software: an update. ACM SIGKDD Explo Newslett 11(1):10–18
Article
Google Scholar
Hammerla N Y, Fisher J, Andras P, Rochester L, Walker R, Plötz T (2015) Pd disease state assessment in naturalistic environments using deep learning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence
Heaton J, Polson N, Witte J H (2017) Deep learning for finance: deep portfolios. Appl Stoch Model Bus Ind 33(1):3–12
MathSciNet
Article
Google Scholar
Holmes G, Donkin A, Witten IH (1994) Weka: A machine learning workbench. In: Proceedings of ANZIIS’94-Australian New Zealnd Intelligent Information Systems Conference. IEEE, pp 357–361
Jordan M I, Mitchell T M (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260
MathSciNet
Article
Google Scholar
KNIME Open for Innovation (2006) https://www.knime.com
Ketkar N (2017a) Introduction to keras. In: Deep Learning with Python. Springer, pp 97–111
Ketkar N (2017b) Introduction to pytorch. In: Deep learning with python. Springer, pp 195–208
Khan A, Mellor S, Berlin E, Thompson R, McNaney R, Olivier P, Plötz T (2015) Beyond activity recognition: skill assessment from accelerometer data In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, pp 1155–1166
Keras (2015) https://www.keras.io
Kranz M, MöLler A, Hammerla N, Diewald S, PlöTz T, Olivier P, Roalter L (2013) The mobile fitness coach: Towards individualized skill assessment using personalized mobile devices. Perv Mob Comput 9(2):203–215
Article
Google Scholar
Kroes M, Kessels A G, Kalff A C, Feron F J, Vissers Y L, Jolles J, Vles J S (2002) Quality of movement as predictor of adhd: results from a prospective population study in 5-and 6-year-old children. Dev Med Child Neurol 44(11):753–760
Article
Google Scholar
Kwapisz J R, Weiss G M, Moore S A (2011) Activity recognition using cell phone accelerometers. ACM SigKDD Explor Newslett 12(2):74–82
Article
Google Scholar
Ladha C, Hammerla N Y, Olivier P, Plötz T (2013) Climbax: skill assessment for climbing enthusiasts. In: Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing ACM, pp 235–244
Lane N D, Georgiev P, Qendro L (2015) Deepear: robust smartphone audio sensing in unconstrained acoustic environments using deep learning In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, pp 283–294
Lara O D, Labrador M A (2013) A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutorials 15(3):1192–1209
Article
Google Scholar
Lau SL, König I, David K, Parandian B, Carius-Düssel C, Schultz M (2010) Supporting patient monitoring using activity recognition with a smartphone. In: 2010 7th International Symposium on Wireless Communication Systems. IEEE, pp 810–814
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
Article
Google Scholar
Ludwig Deep Learning (2019) https://uber.github.io/ludwig/
Logan B, Healey J, Philipose M, Tapia EM, Intille S (2007) A long-term evaluation of sensing modalities for activity recognition. In: International conference on Ubiquitous computing. Springer, pp 483–500
Malik F (2019) Neural networks: a solid practical guide. https://medium.com/fintechexplained/neural-networks-a-solid-practical-guide-9f343594b02a
Marfia G, Roccetti M (2017) A practical computer based vision system for posture and movement sensing in occupational medicine. Multimed Tools Appl 76(6):8109–8129
Article
Google Scholar
Maurtua I, Kirisci PT, Stiefmeier T, Sbodio ML, Witt H (2007) A wearable computing prototype for supporting training activities in automotive production. In: 4th International Forum on Applied Wearable Computing 2007. VDE, pp 1–12
Molino P, Dudin Y, Miryala SS (2019) Ludwig Deep Learning. https://eng.uber.com/introducing-ludwig/https://eng.uber.com/introducing-ludwig/
Naik A, Samant L (2016) Correlation review of classification algorithm using data mining tool: weka, rapidminer, tanagra, orange and knime. Procedia Comput Sci 85:662–668
Article
Google Scholar
Orange (1996) https://orange.biolab.si/
Ortiz Laguna J, Olaya A G, Borrajo D (2011) A dynamic sliding window approach for activity recognition. In: Konstan JA, Conejo R, Marzo J L, Oliver N (eds) User Modeling, Adaption and Personalization. Springer, Berlin, pp 219–230
Parkka J, Ermes M, Korpipaa P, Mantyjarvi J, Peltola J, Korhonen I (2006) Activity classification using realistic data from wearable sensors. IEEE Trans Inf Technol Biomed 10(1):119–128
Article
Google Scholar
Patel K (2010) Lowering the barrier to applying machine learning. In: Adjunct proceedings of the 23nd annual ACM symposium on User interface software and technology. ACM, pp 355–358
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12(Oct):2825–2830
MathSciNet
MATH
Google Scholar
Plötz T, Hammerla N Y, Olivier P L (2011) Feature learning for activity recognition in ubiquitous computing. In: Twenty-Second International Joint Conference on Artificial Intelligence
Pourbabaee B, Roshtkhari M J, Khorasani K (2017) Deep convolutional neural networks and learning ecg features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern: Syst 48(12):2095–2104
Article
Google Scholar
Python programming language (2006) https://www.python.org
Ravi N, Dandekar N, Mysore P, Littman M L (2005) Activity recognition from accelerometer data. In: Aaai, vol 5, pp 1541–1546
Riedel N, Angeli A, Marfia G (2019) Qualitative activity recognition using machine and deep learning: Experimenting with data-human interfaces for non data-scientists. In: Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good. ACM, pp 7–12
Ronao C A, Cho S B (2016) Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst Appl 59:235–244
Article
Google Scholar
Rossum G (1995) Python reference manual
Scikit-learn (2007) https://www.scikit-learn.org
Stiefmeier T, Roggen D, Ogris G, Lukowicz P, Tröster G (2008) Wearable activity tracking in car manufacturing. IEEE Pervasive Computing 7(2):42–50
Article
Google Scholar
Sung M, Marci C, Pentland A (2005) Wearable feedback systems for rehabilitation. J Neuroeng Rehab 2(1):17
Article
Google Scholar
Tarca A L, Carey V J, Xw Chen, Romero R, Drȧghici S (2007) Machine learning and its applications to biology. PLoS Comput Biol 3(6):e116
Article
Google Scholar
Tessendorf B, Gravenhorst F, Arnrich B, Tröster G (2011) An imu-based sensor network to continuously monitor rowing technique on the water. In: 2011 Seventh international conference on intelligent sensors, Sensor Networks and Information Processing. IEEE, pp 253–258
Ugulino W, Velloso E, Fuks H (2019) Human activity recognition. http://groupware.les.inf.puc-rio.br/har#ixzz34dpS6oks
Van der Aalst WM (2014) Data scientist: The engineer of the future. In: Enterprise interoperability VI Springer, pp 13–26
Velloso E, Bulling A, Gellersen H, Ugulino W, Fuks H (2013) Qualitative activity recognition of weight lifting exercises. In: Proceedings of the 4th Augmented Human International Conference, pp 116–123
Waller M A, Fawcett S E (2013) Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J Bus Logist 34 (2):77–84
Article
Google Scholar
Wang J, Chen Y, Hao S, Peng X, Hu L (2019) Deep learning for sensor-based activity recognition: a survey. Pattern Recogn Lett 119:3–11
Article
Google Scholar
Weka (1993) https://www.cs.waikato.ac.nz/ml/weka/
Yang Q, Suh J, Chen NC, Ramos G (2018) Grounding interactive machine learning tool design in how non-experts actually build models. In: Proceedings of the 2018 on Designing Interactive Systems Conference 2018. ACM, pp 573–584
Zorrilla M, García-Saiz D (2013) A service oriented architecture to provide data mining services for non-expert data miners. Decis Support Syst 55(1):399–411