Fractional Local Neighborhood Intensity Pattern for Image Retrieval using Genetic Algorithm

Abstract

In this paper, a new texture descriptor named “Fractional Local Neighborhood Intensity Pattern” (FLNIP) has been proposed for content-based image retrieval (CBIR). It is an extension of an earlier work involving adjacent neighbors (local neighborhood intensity pattern). However, instead of considering two separate patterns for representing sign and magnitude information, one single pattern is generated. FLNIP calculates the relative intensity difference between a particular pixel and the center pixel of a 3 × 3 window by considering the relationship with adjacent neighbors. In this work, the fractional change in the local neighborhood involving the adjacent neighbors has been calculated first with respect to one of the eight neighbors of the center pixel of a 3 × 3 window. Next, the fractional change has been calculated with respect to the center itself. The two values of fractional change are next compared to generate a binary bit pattern. The descriptor is applied on four images- one being the raw image and the other three being filtered gaussian images obtained by applying gaussian filters of different standard deviations on the raw image to signify the importance of exploring texture information at different resolutions in an image. The four sets of distances obtained between the query and the target image are then combined with a genetic algorithm based approach to improve the retrieval performance by minimizing the distance between similar class images. The performance of the method has been tested for image retrieval on four databases and the proposed method has shown a significant improvement over many other existing methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    http://www.wavelab.at/sources/STex/

References

  1. 1.

    Abdelmounaime S, Dong-Chen H (2013) New Brodatz-based image databases for Grayscale color and multiband texture analysis. ISRN Mach Vis 2013:1–14

    Google Scholar 

  2. 2.

    AT&T Laboratories Cambridge, “Database of Faces,” www.cl.cam.ac.uk/, 2002.

  3. 3.

    Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2017) Local neighborhood intensity pattern: a new texture feature descriptor for image retrieval. arXiv Prepr. arXiv1709.02463

  4. 4.

    Chen J, Kellokumpu V (2013) RLBP: Robust local binary pattern. Proc Br Mach Vis Conf no. 2016, pp 1–10

  5. 5.

    Daye ZJ, Jeng XJ (2009) Shrinkage and model selection with correlated variables via weighted fusion. Comput Stat Data Anal 53(4):1284–1298

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Dubey SR, Singh SK, Singh RK (2016) Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE J Biomed Heal Informatics 20(4):1139–1147

    Google Scholar 

  7. 7.

    Fang Y, Luo J, Lou C (2009) Fusion of multi-directional rotation invariant uniform LBP features for face recognition. In 3rd International Symposium on Intelligent Information Technology Application, IITA 2009, vol 2, pp 332–335

  8. 8.

    Gordo A, Almazán J, Revaud J, Larlus D (2016) Deep image retrieval: learning global representations for image search. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9910 LNCS, pp 241–257

  9. 9.

    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Hamouchene I, Aouat S (2014) A new texture analysis approach for Iris recognition. AASRI Procedia 9:2–7

    Google Scholar 

  11. 11.

    He Y, Sang N, Gao C (2012) Multi-structure local binary patterns for texture classification. Pattern Anal Appl, pp 1–13

  12. 12.

    Hill PR, Bull DR, Canagarajah CN (2000) Rotationally invariant texture features using the dual-tree complex wavelet transform. Proc. 2000 Int. Conf. Image Process. (Cat. No.00CH37101), vol 3, pp 0–3

  13. 13.

    Jeena Jacob I, Srinivasagan KG, Jayapriya K (2014) Local Oppugnant color texture pattern for image retrieval system. Pattern Recogn Lett 42(1):72–78

    Google Scholar 

  14. 14.

    Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recogn Lett 28(10):1240–1249

    Google Scholar 

  15. 15.

    Liao S, Chung A (2007) Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude. Accv 4844:672–679

    Google Scholar 

  16. 16.

    Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Lin J, Qu L (2000) Feature extraction based on MORLET wavelet and its application for mechanical fault diagnosis. J Sound Vib 234(1):135–148

    Google Scholar 

  18. 18.

    Liu H, Wang R, Shan S, Chen X (2016) Deep supervised hashing for fast image retrieval. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp 2064-2072) CVPR

  19. 19.

    Lu X, Chen Y, Li X, Wang X, Ma H, Chen X, Zhang G (2018) Hierarchical recurrent neural hashing for image retrieval with hierarchical convolutional features. In IEEE transactions on image processing

  20. 20.

    Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL (2007) Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507

    Google Scholar 

  21. 21.

    Moghaddam HA, Khajoie TT, Rouhi AH, Tarzjan MS (2005) Wavelet correlogram: a new approach for image indexing and retrieval. Pattern Recogn 38(12):2506–2518

    Google Scholar 

  22. 22.

    Moore S, Bowden R (2011) Local binary patterns for multi-view facial expression recognition. Comput Vis Image Underst 115(4):541–558

    Google Scholar 

  23. 23.

    Müller H, Rosset A, Vallée JP, Terrier F, Geissbuhler A (2004) A reference data set for the evaluation of medical image retrieval systems. Comput Med Imaging Graph 28(6):295–305

    Google Scholar 

  24. 24.

    Murala S, Gonde AB, Maheshwari RP (2009) Color and texture features for image indexing and retrieval. In 2009 IEEE international advance computing conference, IACC 2009, pp 1411–1416

  25. 25.

    Murala S, Jonathan Wu QM (2014) MRI and CT image indexing and retrieval using local mesh peak valley edge patterns. Signal Process Image Commun 29(3):400–409

    Google Scholar 

  26. 26.

    Murala S, Jonathan Wu QM (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149(PC):1502–1514

    Google Scholar 

  27. 27.

    Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Murala S, Maheshwari RP, Balasubramanian R (2012) Directional binary wavelet patterns for biomedical image indexing and retrieval. J Med Syst 36(5):2865–2879

    Google Scholar 

  29. 29.

    Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local Extrema patterns: a new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203

    MATH  Google Scholar 

  30. 30.

    Murala S, Wu QMJ (2013) Peak valley edge patterns: a new descriptor for biomedical image indexing and retrieval. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp 444–449

  31. 31.

    Murala S, Wu QMJ (2014) Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Heal. Informatics 18(3):929–938

    Google Scholar 

  32. 32.

    Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125

    MATH  Google Scholar 

  33. 33.

    Nie L, Wang M, Zha ZJ, Chua TS (2012) Oracle in image search: a content-based approach to performance prediction. ACM Transactions on Information Systems (TOIS) 30(2):13

    Google Scholar 

  34. 34.

    Nie L, Yan S, Wang M, Hong R, Chua TS (2012) Harvesting visual concepts for image search with complex queries. In Proceedings of the 20th ACM international conference on Multimedia (pp 59–68). ACM

  35. 35.

    Ning J, Zhang L, Zhang D, Wu C (2009) Robust object tracking using joint color-texture histogram. Int J Pattern Recognit Artif Intell 23(07):1245–1263

    Google Scholar 

  36. 36.

    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  37. 37.

    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  38. 38.

    Papushoy A, Bors AG (2015) Image retrieval based on query by saliency content. Digit Signal Process 36:156–173

    MathSciNet  Google Scholar 

  39. 39.

    Raghuwanshi G, Tyagi V (2016) Texture image retrieval using adaptive tetrolet transforms. Digit. Signal Process. 48:50–57

    MathSciNet  Google Scholar 

  40. 40.

    Reddy PVB, Reddy ARM (2014) Content based image indexing and retrieval using directional local Extrema and magnitude patterns. AEU - Int J Electron Commun 68(7):637–643

    Google Scholar 

  41. 41.

    Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22(10):4049–4060

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Subrahmanyam M, Maheshwari RP, Balasubramanian R (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479

    Google Scholar 

  43. 43.

    Takala V, Ahonen T, Pietikainen M (2005) Block-based methods for image retrieval using Local Binary Patterns. Lecture Notes in Computer Science 3540:882–891

    Google Scholar 

  44. 44.

    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    MathSciNet  MATH  Google Scholar 

  45. 45.

    Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236

    Google Scholar 

  46. 46.

    Verma M, Raman B (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit Signal Process A Rev J 51:62–72

    MathSciNet  Google Scholar 

  47. 47.

    Verma M, Raman B (2017) Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimed Tools Appl:1–24

  48. 48.

    Wan J et al (2014) Deep Learning for Content-Based Image Retrieval. Proceedings of the ACM International Conference on Multimedia - MM 14:157–166

    Google Scholar 

  49. 49.

    Wolf L, Hassner T, Taigman Y (2008) Descriptor based methods in the wild. In Faces in Real-Life Images Workshop 6:1–14

    Google Scholar 

  50. 50.

    Xie S, Shan S, Chen X, Chen J (2010) Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Trans Image Process 19(5):1349–1361

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Xu Y, Lu Y (2015) Adaptive weighted fusion: a novel fusion approach for image classification. Neurocomputing 168:566–574

    Google Scholar 

  52. 52.

    Yao CH, Chen SY (2002) Retrieval of translated, rotated and scaled color textures. Pattern Recogn 36(4):913–929

    Google Scholar 

  53. 53.

    Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Zhang J, Li GL, He SW (2008) Texture-based image retrieval by edge detection matching GLCM. In Proceedings - 10th IEEE International Conference on High Performance Computing and Communications, HPCC, 2008, pp 782–786

  55. 55.

    Zhang D, Wong A, Indrawan M, Lu G (2000) Content-based Image Retrieval Using Gabor Texture Features. IEEE Trans. PAMI 3656 LNCS:13–15

    Google Scholar 

  56. 56.

    Zhao Y, Jia W, Hu RX, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing 106:68–76

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Subrahmanyam Murala of Indian Institute of Technology, Ropar for helpful discussions and suggestions to improve the quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Roy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghose, S., Das, A., Bhunia, A.K. et al. Fractional Local Neighborhood Intensity Pattern for Image Retrieval using Genetic Algorithm. Multimed Tools Appl 79, 18527–18552 (2020). https://doi.org/10.1007/s11042-020-08752-6

Download citation

Keywords

  • Local neighborhood intensity pattern
  • Local binary pattern
  • Feature extraction
  • Texture feature