A study of EEG for enterprise multimedia security

Abstract

In this era of technological advancement the security of one’s own identity to access multimedia content have become a major concern for big enterprises. The traditional security mechanisms like PIN numbers, ID cards, passwords, etc., can be easily divulged by the intruders. User identification using these traditional approaches is prone to various security threats. Thus, a robust security system is required to deal with the security issues for user identification and verification before providing access to the multimedia. Recently, the use of Electroencephalogram (EEG) signals as a biometric trait has opened novel ways for the development of various Brain-Computer-Interface (BCI) based applications. Due to the inherent nature of uniqueness in every individual, EEG signals are considered as a robust alternate for biometric systems. In this paper, we perform a detailed review of EEG based security techniques to investigate its robustness in securing enterprise related multimedia contents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Abbas SN, Abo-Zahhad M (2017) Eye blinking EOG signals as biometrics. In: Biometric security and privacy, pp 121–140

  2. 2.

    Abdulkader SN, Atia A, Mostafa MSM (2015) Single trial authentication with mental password writing. In: Human aspects of information security, privacy, and trust, pp 3–12

  3. 3.

    Abo-Zahhad M, Ahmed SM, Abbas SN (2016) A new multi-level approach to EEG based human authentication using eye blinking. Pattern Recogn Lett 82:216–225

    Article  Google Scholar 

  4. 4.

    Altahat S, Chetty G, Tran D, Ma W (2015) Analysing the robust EEG channel set for person authentication. In: International conference on neural information processing, pp 162–173

  5. 5.

    Ashby C, Bhatia A, Tenore F, Vogelstein J (2011) Low-cost electroencephalogram (eeg) based authentication. In: 5th international conference on neural engineering, pp 442–445

  6. 6.

    Blankertz B (2008) Bci competition iii webpage. http://ida.first.fraunhoferde/projects/bci/competitioniii

  7. 7.

    Booker LB, Goldberg DE, Holland JH (1989) Classifier systems and genetic algorithms. Artif Intell 40(1):235–282

    Article  Google Scholar 

  8. 8.

    Brigham K, Kumar BV (2010) Subject identification from electroencephalogram (EEG) signals during imagined speech. In: Fourth IEEE international conference on biometrics: theory applications and systems, pp 1–8

  9. 9.

    Brunner C, Leeb R, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) Bci competition 2008–graz data set a. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces) Graz University of Technology 16

  10. 10.

    Campisi P, Scarano G, Babiloni F, Fallani FD, Colonnese S, Maiorana E, Forastiere L (2011) Brain waves based user recognition using the eyes closed resting conditions protocol. In: International workshop on information forensics and security, pp 1–6

  11. 11.

    Chang V (2018) An overview, examples, and impacts offered by emerging services and analytics in cloud computing virtual reality. Neural Comput Appl 29(5):1243–1256

    Article  Google Scholar 

  12. 12.

    Cheng IL, Chew SW, Kang Y, Chang W, Chen NS (2016) Exploring the difference in brain activities under three distinct tasks: listening to music, gaming, and learning. In: 16th international conference on advanced learning technologies, pp 493–497

  13. 13.

    Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) Eeg datasets for motor imagery brain–computer interface. GigaScience 6(7):gix034

    Article  Google Scholar 

  14. 14.

    Chuang J, Nguyen H, Wang C, Johnson B (2013) I think, therefore i am: Usability and security of authentication using brainwaves. In: International conference on financial cryptography and data security, pp 1–16

  15. 15.

    Dan Z, Xifeng Z, Qiangang G (2013) An identification system based on portable EEG acquisition equipment. In: Third international conference on intelligent system design and engineering applications, pp 281–284

  16. 16.

    Das BB, Kumar P, Kar D, Ram SK, Babu KS, Mohapatra RK (2019) A spatio-temporal model for eeg-based person identification. Multimed Tools Appl 78 (19):28,157–28, 177

    Article  Google Scholar 

  17. 17.

    Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a p300-based brain-computer interface. IEEE Trans Rehabil Eng 8(2):174–179

    Article  Google Scholar 

  18. 18.

    Duncan B, Whittington M, Chang V (2017) Enterprise security and privacy: Why adding iot and big data makes it so much more difficult. In: 2017 international conference on engineering and technology (ICET), pp 1–7

  19. 19.

    El-Fiqi H, Wang M, Salimi N, Kasmarik K, Barlow M, Abbass H (2018) Convolution neural networks for person identification and verification using steady state visual evoked potential. In: 2018 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 1062–1069

  20. 20.

    Fallani FDV, Vecchiato G, Toppi J, Astolfi L, Babiloni F (2011) Subject identification through standard eeg signals during resting states. In: International conference of the engineering in medicine and biology society, pp 2331–2333

  21. 21.

    Gui Q, Jin Z, Xu W (2014) Exploring EEG-based biometrics for user identification and authentication. In: Signal processing in medicine and biology symposium, pp 1–6

  22. 22.

    Garcia-Salicetti S, Beumier C, Chollet G, Dorizzi B, Jardins J, Lunter J, Ni Y, Petrovska-Delacrétaz D (2003) Biomet: a multimodal person authentication database including face, voice, fingerprint, hand and signature modalities. In: Audio-and video-based biometric person authentication. Springer, pp 1056–1056

  23. 23.

    Gauba H, Kumar P, Roy PP, Singh P, Dogra DP, Raman B (2017) Prediction of advertisement preference by fusing eeg response and sentiment analysis. Neural Netw 92:77–88

    Article  Google Scholar 

  24. 24.

    Gupta A, Sahu H, Nanecha N, Kumar P, Roy PP, Chang V (2019) Enhancing text using emotion detected from eeg signals. J Grid Comput 17(2):325–340

    Article  Google Scholar 

  25. 25.

    Gupta B, Agrawal DP, Yamaguchi S (2016) Handbook of research on modern cryptographic solutions for computer and cyber security

  26. 26.

    Gupta CN, Khan YU, Palaniappan R, Sepulveda F (2009) Wavelet framework for improved target detection in oddball paradigms using p300 and gamma band analysis. Biomedic Soft Comput Hum Sci 14(2):61–67

    Google Scholar 

  27. 27.

    Gupta CN, Palaniappan R, Paramesran R (2012) Exploiting the p300 paradigm for cognitive biometrics. Int J Cognit Biometrics 1(1):26–38

    Article  Google Scholar 

  28. 28.

    Hajare MP (2016) Fingerprint recognition system. Int J Res Eng 3(11):18–21

    Google Scholar 

  29. 29.

    Hettich S, Bay S (1999) The uci kdd archive [http://kdd.ics.uci.edu]. Irvine, CA: University of California. Department of Information and Computer Science, 152

  30. 30.

    Hunter M, Smith RL, Hyslop W, Rosso OA, Gerlach R, Rostas J, Williams D, Henskens F (2005) The Australian eeg database. Clin EEG Neurosci 36(2):76–81

    Article  Google Scholar 

  31. 31.

    Ishikawa Y, Yoshida C, Takata M, Joe K (2014) Validation of EEG personal authentication with multi-channels and multi-tasks. In: International conference on parallel and distributed processing techniques and applications, pp 1–7

  32. 32.

    Jasper H (1958) Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol 10:370–375

    Article  Google Scholar 

  33. 33.

    Karyotis C, Doctor F, Iqbal R, James A, Chang V (2018) A fuzzy computational model of emotion for cloud based sentiment analysis. Inf Sci 433:448–463

    Article  Google Scholar 

  34. 34.

    Kaur B, Kumar P, Roy PP, Singh D (2017) Impact of ageing on eeg based biometric systems. In: 2017 4th IAPR asian conference on pattern recognition (ACPR). IEEE, pp 459–464

  35. 35.

    Kaur B, Singh D, Roy PP (2017) A novel framework of eeg-based user identification by analyzing music-listening behavior. Multimed Tools Appl 76(24):25, 581–25, 602

    Article  Google Scholar 

  36. 36.

    Kaur B, Singh D, Roy PP (2019) Age and gender classification using brain–computer interface. Neural Comput Appli 31(10):5887–5900

    Article  Google Scholar 

  37. 37.

    Kaya M, Binli MK, Ozbay E, Yanar H, Mishchenko Y (2018) A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Sci Data 5

  38. 38.

    Keirn ZA, Aunon JI (1990) A new mode of communication between man and his surroundings. IEEE Trans Biomed Eng 37(12):1209–1214

    Article  Google Scholar 

  39. 39.

    Kent JL (2010) Psychedelic information theory: shamanism in the age of reason

  40. 40.

    Kholmatov A, Yanikoglu B (2005) Identity authentication using improved online signature verification method. Pattern Recognit Lett 26(15):2400–2408

    Article  Google Scholar 

  41. 41.

    Koike-Akino T, Mahajan R, Marks TK, Wang Y, Watanabe S, Tuzel O, Orlik P (2016) High-accuracy user identification using EEG biometrics. In: 38th annual international conference of the engineering in medicine and biology society, pp 854–858

  42. 42.

    Kumar P, Saini R, Kaur B, Roy PP, Scheme E (2019) Fusion of neuro-signals and dynamic signatures for person authentication. Sensors 19(21):4641

    Article  Google Scholar 

  43. 43.

    Kumar P, Singhal A, Saini R, Roy PP, Dogra DP (2018) A pervasive electroencephalography-based person authentication system for cloud environment. Displays 55:64–70

    Article  Google Scholar 

  44. 44.

    Kuo CT, Chi PW, Chang V, Lei CL (2018) Sfaas: keeping an eye on iot fusion environment with security fusion as a service. Future Gener Comput Syst 86:1424–1436

    Article  Google Scholar 

  45. 45.

    La Rocca D, Campisi P, Scarano G (2012) EEG biometrics for individual recognition in resting state with closed eyes. In: International conference of the biometrics special interest group, pp 1–12

  46. 46.

    La Rocca D, Campisi P, Scarano G (2013) On the repeatability of EEG features in a biometric recognition framework using a resting state protocol. In: BIOSIGNALS, pp 419–428

  47. 47.

    La Rocca D, Campisi P, Vegso B, Cserti P, Kozmann G, Babiloni F, Fallani FDV (2014) Human brain distinctiveness based on EEG spectral coherence connectivity. IEEE Trans Biomed Eng 61(9):2406–2412

    Article  Google Scholar 

  48. 48.

    Lee HJ, Kim HS, Park KS (2013) A study on the reproducibility of biometric authentication based on electroencephalogram (eeg). In: 6th international conference on neural engineering, pp 13–16

  49. 49.

    Leeb R, Brunner C, Müller-Putz G, Schlögl A, Pfurtscheller G (2008) Bci competition 2008–graz data set b. Graz University of Technology, Austria

    Google Scholar 

  50. 50.

    Maiorana E, La Rocca D, Campisi P (2016) Eigenbrains and eigentensorbrains: parsimonious bases for EEG biometrics. Neurocomputing 171:638–648

    Article  Google Scholar 

  51. 51.

    Maiorana E, La Rocca D, Campisi P (2016) On the permanence of EEG signals for biometric recognition. IEEE Trans Inf Forensics Secur 11(1):163–175

    Article  Google Scholar 

  52. 52.

    Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields

  53. 53.

    Miyamoto C, Baba S, Nakanishi I (2009) Biometric person authentication using new spectral features of electroencephalogram (EEG). In: International symposium on intelligent signal processing and communications systems, pp 1–4

  54. 54.

    Miyamoto SBC, Nakanishi I (2008) Personal authentication using new feature vector of brain wave

  55. 55.

    Mu Z, Hu J, Min J (2016) EEG-based person authentication using a fuzzy entropy-related approach with two electrodes. Entropy 18(12):432

    Article  Google Scholar 

  56. 56.

    Nakanishi I, Baba S, Miyamoto C (2009) EEG based biometric authentication using new spectral features. In: International symposium on intelligent signal processing and communication systems, pp 651–654

  57. 57.

    Nguyen P, Tran D, Huang X, Ma W (2013) Motor imagery EEG-based person verification. In: International work-conference on artificial neural networks, pp 430–438

  58. 58.

    Oh SL, Hagiwara Y, Raghavendra U, Yuvaraj R, Arunkumar N, Murugappan M, Acharya UR (2018) A deep learning approach for parkinsons disease diagnosis from eeg signals. Neural Comput Appl: 1–7

  59. 59.

    Pal A, Mukherjee A, Dey S (2016) Future of healthcare sensor data-driven prognosis. In: Wireless world in 2050 and beyond: a window into the future, pp 93–109

  60. 60.

    Palaniappan R (2004) Method of identifying individuals using VEP signals and neural network. Sci Meas Technol 151(1):16–20

    MathSciNet  Article  Google Scholar 

  61. 61.

    Palaniappan R (2006) Electroencephalogram signals from imagined activities: a novel biometric identifier for a small population. In: International conference on intelligent data engineering and automated learning, pp 604–611

  62. 62.

    Palaniappan R (2008) Two-stage biometric authentication method using thought activity brain waves. Int J Neural Syst 18(01):59–66

    Article  Google Scholar 

  63. 63.

    Palaniappan R, Mandic DP (2007) EEG based biometric framework for automatic identity verification. J VlSI Sig Proc Syst Sig Image Video Technol 49(2):243–250

    Article  Google Scholar 

  64. 64.

    Palaniappan R, Ravi K (2003) A new method to identify individuals using signals from the brain. In: Fourth international conference on information, communications and signal processing, and fourth pacific rim conference on multimedia, vol 3, pp 1442–1445

  65. 65.

    Palaniappan R, Ravi K (2006) Improving visual evoked potential feature classification for person recognition using PCA and normalization. Pattern Recognit Lett 27(7):726–733

    Article  Google Scholar 

  66. 66.

    Pham T, Ma W, Tran D, Nguyen P, Phung D (2013) EEG-based user authentication in multilevel security systems. In: International conference on advanced data mining and applications, pp 513–523

  67. 67.

    Phothisonothai M (2015) An investigation of using SSVEP for EEG-based user authentication system. In: Asia-pacific signal and information processing association annual summit and conference, pp 923–926

  68. 68.

    Phung D, Tran D, Ma W, Nguyen P, Pham T (2014) Using shannon entropy as EEG signal feature for fast person identification. In: ESANN

  69. 69.

    Rajeswari P, Raju SV, Ashour AS, Dey N (2017) Multi-fingerprint unimodel-based biometric authentication supporting cloud computing. In: Intelligent techniques in signal processing for multimedia security, pp 469–485

  70. 70.

    Ravi K, Palaniappan R (2005) Leave-one-out authentication of persons using 40 hz EEG oscillations. In: The international conference on computer as a tool, vol 2, pp 1386–1389

  71. 71.

    Riera A, Soria-Frisch A, Caparrini M, Grau C, Ruffini G (2007) Unobtrusive biometric system based on electroencephalogram analysis. EURASIP J Adv Signal Process 2008(1):1–8

    MATH  Article  Google Scholar 

  72. 72.

    Rodrigues D, Silva GF, Papa JP, Marana AN, Yang XS (2016) EEG-based person identification through binary flower pollination algorithm. Expert Syst Appl 62:81–90

    Article  Google Scholar 

  73. 73.

    Saini R, Kaur B, Singh P, Kumar P, Roy PP, Raman B, Singh D (2018) Don’t just sign use brain too: a novel multimodal approach for user identification and verification. Inf Sci 430:163–178

    Article  Google Scholar 

  74. 74.

    Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Trans Biomed Eng 51(6):1034–1043

    Article  Google Scholar 

  75. 75.

    Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for eeg decoding and visualization. Hum Brain Mapp 38(11):5391–5420

    Article  Google Scholar 

  76. 76.

    Sebastien M, Josr D (2007) Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans Pattern Anal Mach Intell 29 (4):743–752

    Article  Google Scholar 

  77. 77.

    Sharma PK, Vaish A (2016) Individual identification based on neuro-signal using motor movement and imaginary cognitive process. Optik-Int J Light Electron Optics 127(4):2143–2148

    Article  Google Scholar 

  78. 78.

    Shedeed HA (2011) A new method for person identification in a biometric security system based on brain EEG signal processing. In: World congress on information and communication technologies, pp 1205–1210

  79. 79.

    Snodgrass JG, Vanderwart M (1980) A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Lear Mem 6(2):174

    Article  Google Scholar 

  80. 80.

    Sohal AS, Sandhu R, Sood SK, Chang V (2018) A cybersecurity framework to identify malicious edge device in fog computing and cloud-of-things environments. Comput Secur 74:340–354

    Article  Google Scholar 

  81. 81.

    Sonawane V, Sonawane P, Shelke A, Take V (2016) A comprehensive survey on various graphical password schemas against shoulder surfing attack. Int J Eng Sci 3184

  82. 82.

    Tangkraingkij P (2016) Significant frequency range of brain wave signals for authentication. In: Software engineering, artificial intelligence, networking and parallel/distributed computing, pp 103–113

  83. 83.

    van Andel J, Thijs RD, de Weerd A, Arends J, Leijten F (2016) Non-EEG based ambulatory seizure detection designed for home use: what is available and how will it influence epilepsy care? Epilepsy Behav 57:82–89

    Article  Google Scholar 

  84. 84.

    Wilaiprasitporn T, Ditthapron A, Matchaparn K, Tongbuasirilai T, Banluesombatkul N, Chuangsuwanich E (2019) Affective eeg-based person identification using the deep learning approach. IEEE Trans Cogn Developmental Sys

  85. 85.

    Yadava M, Kumar P, Saini R, Roy PP, Dogra DP (2017) Analysis of EEG signals and its application to neuromarketing. Multimed Tools Appl: 1–25

  86. 86.

    Yu M, Kaongoen N, Jo S (2016) P300-BCI-based authentication system. In: 4th international winter conference on brain-computer interface, pp 1–4

  87. 87.

    Zquete A, Quintela B, da Silva Cunha JP (2010) Biometric authentication using brain responses to visual stimuli. In: Biosignals, pp 103–112

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barjinder Kaur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Singh, D. & Roy, P.P. A study of EEG for enterprise multimedia security. Multimed Tools Appl 79, 10805–10823 (2020). https://doi.org/10.1007/s11042-020-08667-2

Download citation

Keywords

  • Biometrics
  • Electroencephalogram (EEG)
  • Brain computer interface (BCI)
  • Multimedia security