Aggarwal A, Kumar S, Bhargava K, Kumaraguru P (2018) The follower count fallacy: detecting twitter users with manipulated follower count. Proceedings of SAC 2018: symposium on applied Computing 8
Aghdam MH, Heidari S (2015) Feature selection using particle swarm optimization in text categorization. J Artif Intell Soft Comput Res 5(4):231–238
Article
Google Scholar
Alzubi J, Nayyar A, Kumar A (2018) Machine learning from theory to algorithms: an overview. J Phys: Conf Ser 1142(1):012012
Google Scholar
Boididou C, Middleton SE, Jin Z, Papadopoulos S, Dang-Nguyen D-T, Boato G, Kompatsiaris Y (2018) Verifying information with multimedia content on twitter. Multimed Tools Appl 77(12):15545–15571. https://doi.org/10.1007/s11042-017-5132-9
Article
Google Scholar
Castillo C, Mendoza M, Poblete B (2011) Information credibility on twitter, Proceedings of the 20th International Conference on World Wide Web. ACM: 675–684
Chang C, Zhang Y, Szabo C, Sheng QZ (2016) Extreme user and political rumor detection on twitter. Proceedings of 12th International Conference Advanced Data Mining and Applications, Springer, 751–763
Chua Alton YK, Banerjee S (2016) Linguistic predictors of rumor veracity on the internet. Proceedings of the international multi conference of engineers and computer scientists 1
Enayet O, El-Beltagy SR (2017) NileTMRG at SemEval-2017 task 8: determining rumour and veracity support for rumours on twitter. Proceedings of SemEval. ACL
Giasemidis G, Singleton C, Agrafiotis I, Jason RC, Pilgrim A, Willis C, Greetham DV (2016) Determining the veracity of rumours on twitter. International conference on social informatics. Springer: 185–205
Gorrell G, Bontcheva K, Derczynski L, Kochkina E, Liakata M, Zubiaga A, Eval R (2019) Determining rumour veracity and support for rumours
Indian Express Website (2018) https://indianexpress.com/]https://indianexpress.com/
Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw Perth: 1942–1948
Kennedy J, Eberhart RC (1995) A new optimizer using particle swarm theory Sixth International Symposium on Micro Machine and Human Science, Nagoya: 39–43
Kumar A, Jaiswal A (2017) Empirical study of twitter and Tumblr for sentiment analysis using soft computing techniques. Int Conf Soft Comput Applic (ICSCA 2017), World Congress Eng Comput Sci 1:1–5
Google Scholar
Kumar A, Jaiswal A (2019) Systematic literature review of sentiment analysis on twitter using soft computing techniques. Concurrency Computat Pract Exper: e5107. doi:https://doi.org/10.1002/cpe.5107
Kumar A, Sangwan SR (2018) Information Virality prediction using emotion quotient of tweets. Int J Comput Sci Eng 6(6):642–651
Google Scholar
Kumar A, Sangwan SR (2018) Rumour detection using machine learning techniques on social media, International Conference on Innovative Computing and Communication. Lecture Notes in Networks and Systems, Springer
Kumar A, Dogra P, Dabas V (2015) Emotion analysis of twitter using opinion mining international conference on contemporary computing (IC3). IEEE, 285–290
Kumar A, Khorwal R, Chaudhary S (2016) A survey on sentiment analysis using swarm intelligence, Indian J Sci Technol 9(39)
Kwon S, Cha M, Jung K, Chen W, Wang Y (2013) Prominent features of rumor propagation in online social media. 13th international conference on data mining. IEEE: 1103–1108
Kwon S, Cha M, Jung K (2017) Rumor detection over varying time windows. PLoS One 12:1
Google Scholar
Liu X, Nourbakhsh A, Li Q, Fang R, Shah S (2015) Real-time rumor debunking on Twitter. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM: 1867–1870
Loper E, Bird S (2002) 2002. NLTK: the natural language toolkit, proceedings of the ACL-02 workshop on effective tools and methodologies for teaching natural language processing and computational linguistics. Assoc Comput Linguist 1:63–70
Google Scholar
Ma J, Gao W, Wei Z, Lu Y, Wong K (2015) Detect rumors using time series of social context information on microblogging websites. Proceedings of the 24th ACM international on conference on Information and Knowledge Management ACM: 1751–1754
Ma B, Lin D, Cao D (2017) Content representation for microblog rumor detection. Advances in Computational Intelligence Systems Springer: 245–251
Nielsen FA (2011) A new ANEW: evaluation of a word list for sentiment analysis in microblogs. In Proc ESWC-11
Omar N, Jusoh F, Ibrahim R et al (2013) Review of feature selection for solving classification problems. J Inform Syst Res Innov 3:64–70
Google Scholar
Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137 Available : https://tartarus.org/martin/PorterStemmer/
Article
Google Scholar
Serrano E, Iglesias CA, Garijo M (2015) A survey of twitter rumour spreading simulations, computational collective intelligence. Lecture notes in computer science, Vol 9329. Springer, pp 113–122
Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proc IEEE Int Conf Evolutionary Computation. Anchorage, AK, USA: 69–73
Veyseh A Ebrahimi J, Dou D, Lowd D (2017) A Temporal Attentional Model for Rumor Stance Classification. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM '17). ACM, 2335–2338
Vosoughi S (2015) Automatic detection and verification of rumors on twitter. Ph.D. Dissertation
Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. Science 359(6380):11461151
Article
Google Scholar
Wang S, Terano T (2015) Detecting rumor patterns in streaming social media. Proceedings of the 2015 IEEE international conference on big data (big Data’15). IEEE: 2709–2715
Wang X, Yang J, Teng X (2007) Feature selection based on rough sets and particle swarm optimization. Pattern Recogn Lett 28(4):459–471
Article
Google Scholar
Wu K, Yang S, Zhu KQ (2015) False rumors detection on sinaweibo by propagation structures. Proceedings of the 2015 IEEE 31st international conference on data engineering. IEEE: 651–662
Yang F, Liu L, Yu X, Yang M (2012) Automatic detection of rumor on Sina Weibo. Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics ACM: 13
Zhang Z, Zhang Z, Li H (2015) Predictors of the authenticity of internet health rumours. Health Inform Libr J 32(3):195–205
Article
Google Scholar
Zubiaga A, Aker A, Bontcheva K, Liakata M, Procter R (2018) Detection and resolution of rumours in social media: a survey. ACM Comput Surv (CSUR) 51(2):32
Article
Google Scholar