Skip to main content
Log in

Fuzzy energy based active contour model for multi-region image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this article, we present a new multi-phase pseudo 0.5 level set framework on fuzzy energy based active contour model to segment images into more than two regions. The proposed method is a generalization of fuzzy active contour based on 2-phase segmentation (object and background), developed by Krinidis and Chatzis. The proposed method needs only log2n pseudo 0.5 level set functions for n phase piece-wise constant case. In piece-wise smooth case, only two pseudo 0.5 level set functions are sufficient to represent any partition based on ‘the four colo theorem. The proposed fuzzy active contour model can segment images into multiple regions instead of two regions (object and background) based on curve evolution. In this article, instead of solving the Euler-Lagrange equation, a multi-phase pseudo 0.5 level set based optimization is proposed to speed up the convergence. Finally, the proposed method is compared with state-of-the-art techniques on several images. Analysis (both qualitative and quantitative) of the results concludes that the proposed method segments images into multiple regions in a better way as compared to the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/

  2. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bsds500

  3. http://www.bic.mni.mcgill.ca/brainweb

  4. http://remotesensing.usgs.gov/gallery/

  5. http://jiangyeyuan.com/ASD/AerialImageSegmentationDataset.html

  6. http://see.xidian.edu.cn/faculty/mggong/publication.htm

  7. http://in.mathworks.com/matlabcentral/fileexchange/23445-chan-vese-active-contours-without-edges

References

  1. Alpert S, Galun M, Brandt A, Basri R (2011) Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans Pattern Anal Mach Intell 34(2):315–327

    Article  Google Scholar 

  2. Appel K, Haken W (1977) . Ill J Math 21(3):429–490

    Article  Google Scholar 

  3. Arbelaez P, Maire M, Fowlkes C, Malik J (2010) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916

    Article  Google Scholar 

  4. Bae E, Tai X C (2009) Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation. In: International conference on scale space and variational methods in computer vision, pp 1–13. Springer

  5. Bezdek J C (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers

  6. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40 (3):825–838

    Article  Google Scholar 

  7. Caselles V, Catté F, Coll T, Dibos F (1993) A geometric model for active contours in image processing. Numer Math 66(1):1–31

    Article  MathSciNet  Google Scholar 

  8. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  Google Scholar 

  9. Chan T F, Vese L A (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  Google Scholar 

  10. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. Int J Comput Vis 72(2):195–215

    Article  Google Scholar 

  11. Dubrovina-Karni A, Rosman G, Kimmel R (2015) Multi-region active contours with a single level set function. IEEE Trans Pattern Anal Mach Intell 37(8):1585–1601

    Article  Google Scholar 

  12. Fox C W (1988) An introduction to the calculus of variations. Dover Publications Inc

  13. Gong M, Liang Y, Shi J, Ma W, Ma J (2013) Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584

    Article  MathSciNet  Google Scholar 

  14. Gonzalez R F, Woods R E (2008) Digital image processing, Pearson Education, Singapore

  15. He L, Osher S (2007) Solving the chan-vese model by a multiphase level set algorithm based on the topological derivative. In: International conference on scale space and variational methods in computer vision, pp 777–788. Springer

  16. Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  17. Krinidis S, Chatzis V (2009) Fuzzy energy-based active contours. IEEE Trans Image Process 18(12):2747–2755

    Article  MathSciNet  Google Scholar 

  18. Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  Google Scholar 

  19. Krinidis S, Krinidis M (2012) Fuzzy energy-based active contours exploiting local information. In: 8th International conference on artificial intelligence applications and innovations (AIAI’12), pp 27–30

    Google Scholar 

  20. Li C, Kao C Y, Gore J C, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949

    Article  MathSciNet  Google Scholar 

  21. Li C, Xu C, Gui C, Fox M D (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254

    Article  MathSciNet  Google Scholar 

  22. Liu W, Shang Y, Yang X (2013) Active contour model driven by local histogram fitting energy. Pattern Recogn Lett 34(6):655–662

    Article  Google Scholar 

  23. Lucas B C, Kazhdan M, Taylor R H (2012) Multi-object spring level sets (muscle). In: International conference on medical image computing and computer-assisted intervention, pp 495–503. Springer

  24. Martin D, Fowlkes C, Tal D, Malik J, et al. (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: International conference on computer vision (ICCV), vol 2, pp 416–423

  25. Mondal A, Ghosh S, Ghosh A (2016) Robust global and local fuzzy energy based active contour for image segmentation. Appl Soft Comput 47:191–215

    Article  Google Scholar 

  26. Mondal A, Murthy K R, Ghosh A, Ghosh S (2016) Robust image segmentation using global and local fuzzy energy based active contour. In: 2016 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1341–1348

  27. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  MathSciNet  Google Scholar 

  28. Nguyen T N A, Cai J, Zhang J, Zheng J (2012) Robust interactive image segmentation using convex active contours. IEEE Trans Image Process 21(8):3734–3743

    Article  MathSciNet  Google Scholar 

  29. Santis A D, Iacoviello D (2007) A discrete level set approach to image segmentation. SIViP 1:303–320

    Article  Google Scholar 

  30. Saraswathi S, Allirani A (2013) Survey on image segmentation via clustering. In: IEEE international conference on information communication and embedded systems (ICICES), pp 331–335

  31. Shyu K K, Pham V T, Tran T T, Lee P L (2012) Global and local fuzzy energy-based active contours for image segmentation. Nonlinear Dyn 67(2):1559–1578

    Article  MathSciNet  Google Scholar 

  32. Song B, Chan T (2002) A fast algorithm for level set based optimization. CAM-UCLA 68:02–68

    Google Scholar 

  33. Sun W, Dong E, Qiao H (2018) A fuzzy energy-based active contour model with adaptive contrast constraint for local segmentation. SIViP 12:91–98

    Article  Google Scholar 

  34. Tran T T, Pham V T, Shyu K K (2014) Image segmentation using fuzzy energy-based active contour with shape prior. J Vis Commun Image Represent 25 (7):1732–1745

    Article  Google Scholar 

  35. Vese L A, Chan T F (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293

    Article  Google Scholar 

  36. Wu Y, Ma W, Gong M, Li H, Jiao L (2015) Novel fuzzy active contour model with kernel metric for image segmentation. Appl Soft Comput 34:301–311

    Article  Google Scholar 

  37. Xie Z, Wang S, Hu D (2013) New insight at level set and gaussian mixture model for natural image segmentation. SIViP 7:521–536

    Article  Google Scholar 

  38. Zhang K, Song H, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recogn 43(4):1199–1206

    Article  Google Scholar 

  39. Zhang K, Zhang L, Song H, Zhou W (2010) Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis Comput 28(4):668–676

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajoy Mondal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 3.53 MB)

Appendix A

Appendix A

Since, an image is discrete in nature, instead of integration, summation is considered here.

Let us assume four prototypes c1, c2, c3 and c4 correspond to four regions Ω1 = {u1 > 0.5,u2 > 0.5}, Ω2 = {u1 > 0.5,u2 < 0.5}, Ω3 = {u1 < 0.5,u2 > 0.5} and Ω4 = {u1 < 0.5,u2 < 0.5}, which approximate the image intensity within these regions. Thus, it can be written as

$$ \begin{array}{@{}rcl@{}} c_{1} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {u_{1} (x,y)} \right]}^{m} \left[ {u_{2} (x,y)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {u_{1} (x,y)} \right]}^{m} \left[ {u_{2} (x,y)} \right]^{m} }}, \end{array} $$
(15)
$$ \begin{array}{@{}rcl@{}} c_{2} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {u_{1} (x,y)} \right]}^{m} \left[ {1 - u_{2} (x,y)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {u_{1} (x,y)} \right]}^{m} \left[ {1 - u_{2} (x,y)} \right]^{m} }}, \end{array} $$
(16)
$$ \begin{array}{@{}rcl@{}} c_{3} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {1 - u_{1} (x,y)} \right]}^{m} \left[ {u_{2} (x,y)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {1 - u_{1} (x,y)} \right]}^{m} \left[ {u_{2} (x,y)} \right]^{m} }} \end{array} $$
(17)

and

$$ \begin{array}{@{}rcl@{}} c_{4} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {1 - u_{1} (x,y)} \right]}^{m} \left[ {1 - u_{2} (x,y)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {1 - u_{1} (x,y)} \right]}^{m} \left[ {1 - u_{2} (x,y)} \right]^{m} }}, \end{array} $$
(18)

where I(x,y) is the intensity value at pixel location (x,y), u1(x,y) and u2(x,y) are the degree of memberships of pixel (x,y) correspond to four regions, and m is the fuzzifier which determines the fuzziness present in the given image.

Therefore, total fuzzy energy for the whole image can be computed as

$$ \begin{array}{@{}rcl@{}} F &=& \lambda_{1} \sum\limits_{\varOmega} {\left[ {u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {u_{2} (x,y)} \right]^{m} \left\| {I(x,y) - c_{1} } \right\|^{2} \\ &&+ \lambda_{2} \sum\limits_{\varOmega} {\left[ {u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - u_{2} (x,y)} \right]^{m} \left\| {I(x,y) - c_{2} } \right\|^{2} \\ &&+ \lambda_{3} \sum\limits_{\varOmega} {\left[ {1 - u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {u_{2} (x,y)} \right]^{m} \left\| {I(x,y) - c_{3} } \right\|^{2} \\ &&+ \lambda_{4} \sum\limits_{\varOmega} {\left[ {1 - u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - u_{2} (x,y)} \right]^{m} \left\| {I(x,y) - c_{4} } \right\|^{2} \\ &=&F_{A} + F_{B} + F_{C} + F_{D}. \end{array} $$
(19)

Let us assume that a pixel (x0,y0) ∈ I with intensity I(x0,y0) and degree of memberships \(u_{1}^{old}(x_{0},y_{0})\) and \(u_{2}^{old}(x_{0},y_{0})\). If we change the degree of memberships of pixel (x0,y0) to the values \(u_{1}^{new}(x_{0},y_{0})\) and \(u_{2}^{new}(x_{0},y_{0})\), respectively using (9) and (10), then c1, c2, c3 and c4 will be changed to new values \( \overline {c_{1}}\), \( \overline {c_{2}}\), \( \overline {c_{3}}\) and \(\overline {c_{4}}\), respectively. The new values of c1, c2, c3 and c4 are calculated as

$$ \begin{array}{@{}rcl@{}} \bar c_{1} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {\bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {\bar u_{2} \left( {x,y} \right)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {\bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {\bar u_{2} \left( {x,y} \right)} \right]^{m} }}\ &=& \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {u_{2} \left( {x,y} \right)} \right]^{m} + I(x_{0},y_{0}) b_{1} }} {{\sum\limits_{\varOmega} {\left[ {u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {u_{2} \left( {x,y} \right)} \right]^{m} + b_{1}}}\\ &=& \frac{{c_{1} a_{1} + I(x_{0},y_{0}) b_{1} }}{{a_{1} + b_{1} }} = c_{1} + s_{1} \left\| {I(x_{0},y_{0}) - c_{1} } \right\|, \end{array} $$
(20)

where

$$ \begin{array}{@{}rcl@{}} a_{1} &=& \sum\limits_{\varOmega} {\left[ {u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {u_{2} \left( {x,y} \right)} \right]^{m},\\ b_{1} &=& \left\{ {\left[ {u_{1}^{new}(x_{0},y_{0}) } \right]^{m} - \left[ {u_{1}^{old}(x_{0},y_{0}) } \right]^{m} } \right\} \left\{ {\left[ {u_{2}^{new}(x_{0},y_{0}) } \right]^{m} - \left[ {u_{2}^{old}(x_{0},y_{0}) } \right]^{m} } \right\}\\ \text{and}\ s_{1} = \frac{{b_{1} }}{{a_{1} + b_{1} }}. \end{array} $$

Similarly,

$$ \begin{array}{@{}rcl@{}} \bar c_{2} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {\bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - \bar u_{2} \left( {x,y} \right)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {\bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - \bar u_{2} \left( {x,y} \right)} \right]^{m} }} = c_{2} + s_{2} \left\| {I(x_{0},y_{0}) - c_{2} } \right\| \end{array} $$
(21)

where

$$ \begin{array}{@{}rcl@{}} a_{2} &=& \sum\limits_{\varOmega} {\left[ {u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - u_{2} \left( {x,y} \right)} \right]^{m},\\ b_{2} &=& \left\{ {\left[ {u_{1}^{new}(x_{0},y_{0}) } \right]^{m} - \left[ {u_{1}^{old}(x_{0},y_{0}) } \right]^{m} } \right\} \left\{\left[{1 - u_{2}^{new}(x_{0},y_{0}) } \right]^{m}\right.\\ && \left. - \left[ {1 - u_{2}^{old}(x_{0},y_{0}) } \right]^{m} \right\}\\ \text{and}\ s_{2} = \frac{{b_{2}}}{{a_{2} + b_{2}}}. \end{array} $$
$$ \begin{array}{@{}rcl@{}} \bar c_{3} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {1 - \bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {\bar u_{2} \left( {x,y} \right)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {1 - \bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {\bar u_{2} \left( {x,y} \right)} \right]^{m} }} = c_{3} + s_{3} \left\| {I(x_{0},y_{0}) - c_{3} } \right\|, \end{array} $$
(22)

where

$$ \begin{array}{@{}rcl@{}} a_{3} &=& \sum\limits_{\varOmega} {\left[ {1 - u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {u_{2} \left( {x,y} \right)} \right]^{m},\\ b_{3} &=& \left\{ {\left[ {1 - u_{1}^{new}(x_{0},y_{0}) } \right]^{m} - \left[ {1 - u_{1}^{old}(x_{0},y_{0}) } \right]^{m} } \right\} \left\{\left[ {u_{2}^{new}(x_{0},y_{0}) } \right]^{m}\right.\\ && \left.- \left[ {u_{2}^{old}(x_{0},y_{0}) } \right]^{m}\right\}\\ \text{and}\ s_{3} = \frac{{b_{3} }}{{a_{3} + b_{3} }}. \end{array} $$
$$ \begin{array}{@{}rcl@{}} \bar c_{4} = \frac{{\sum\limits_{\varOmega} {I\left( {x,y} \right)\left[ {1 - \bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - \bar u_{2} \left( {x,y} \right)} \right]^{m} }}{{\sum\limits_{\varOmega} {\left[ {1 - \bar u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - \bar u_{2} \left( {x,y} \right)} \right]^{m} }} = c_{4} + s_{4} \left\| {I(x_{0},y_{0}) - c_{4} } \right\|, \end{array} $$
(23)

where

$$ \begin{array}{@{}rcl@{}} a_{4} &=& \sum\limits_{\varOmega} {\left[ {1 - u_{1} \left( {x,y} \right)} \right]}^{m} \left[ {1 - u_{2} \left( {x,y} \right)} \right]^{m},\\ b_{4} &=& \left\{ {\left[ {1 - u_{1}^{new}(x_{0},y_{0}) } \right]^{m} - \left[ {1 - u_{1}^{old}(x_{0},y_{0}) } \right]^{m} } \right\} \left\{\left[ {1 - u_{2}^{new}(x_{0},y_{0}) } \right]^{m}\right.\\ && \left.- \left[ {1 - u_{2}^{old}(x_{0},y_{0}) } \right]^{m} \right\}\\ \text{and}\ s_{4} = \frac{{b_{4} }}{{a_{4} + b_{4} }}. \end{array} $$

From (19), it is seen that if degree of memberships u1(x,y) and u2(x,y) are changed, then the energy of the model will also be changed. If F denotes the old energy and \(\overline {F}\) denotes the new energy due to changing of degree of memberships of the point (x0,y0), then

$$ \begin{array}{@{}rcl@{}} \overline F = \overline F_{A} + \overline F_{B} + \overline F_{C} + \overline F_{D}, \end{array} $$
(24)

with

$$ \begin{array}{@{}rcl@{}} \bar F_{A} &=& \lambda_{1} \sum\limits_{\varOmega} {\left\| {I(x,y) - \bar c_{1} } \right\|}^{2} \left[ {\bar u_{1} (x,y)} \right]^{m} \left[ {\bar u_{2} (x,y)} \right]^{m}\\ &&+ \lambda_{1} \sum\limits_{\varOmega} {\left\| {I(x,y) - c_{1} } \right\|}^{2} \left[ {u_{1} (x,y)} \right]^{m} \left[ {u_{2} (x,y)} \right]^{m} + \\ &&\left\{ {\left[ {u_{1}^{new}(x_{0},y_{0}) } \right]^{m} - \left[ {u_{1}^{old}(x_{0},y_{0}) } \right]^{m} } \right\} \left\{ \left[ {u_{2}^{new}(x_{0},y_{0}) } \right]^{m}\right.\\ &&\left.- \left[ {u_{2}^{old}(x_{0},y_{0}) } \right]^{m} \right\}\left\| {I_(x_{0},y_{0}) - c_{1} } \right\|^{2}\\ &=& F_{A} + \lambda_{1} a_{1} s_{1} \left\| {I(x_{0},y_{0}) - c_{1} } \right\|^{2} . \end{array} $$
(25)

Similarly,

$$ \begin{array}{@{}rcl@{}} \bar F_{B} &=& \lambda_{2} \sum\limits_{\varOmega} {\left\| {I(x,y) - \bar c_{2} } \right\|}^{2} \left[ {\bar u_{1} (x,y)} \right]^{m} \left[ {1 - \bar u_{2} (x,y)} \right]^{m}\\ &=& F_{B} + \lambda_{2} a_{2} s_{2} \left\| {I(x_{0},y_{0}) - c_{2} } \right\|^{2}. \end{array} $$
(26)
$$ \begin{array}{@{}rcl@{}} \bar F_{C} &=& \lambda_{3} \sum\limits_{\varOmega} {\left\| {I(x,y) - \bar c_{3} } \right\|}^{2} \left[ {1 - \bar u_{1} (x,y)} \right]^{m} \left[ {\bar u_{2} (x,y)} \right]^{m} \\ &=& F_{C} + \lambda_{3} a_{3} s_{3} \left\| {I(x_{0},y_{0}) - c_{3} } \right\|^{2}. \end{array} $$
(27)
$$ \begin{array}{@{}rcl@{}} \bar F_{D} &=& \lambda_{4} \sum\limits_{\varOmega} {\left\| {I(x,y) - \bar c_{4} } \right\|}^{2} \left[ {1 - \bar u_{1} (x,y)} \right]^{m} \left[ {1 - \bar u_{2} (x,y)} \right]^{m} \\ &=& F_{D} + \lambda_{4} a_{4} s_{4} \left\| {I(x_{0},y_{0}) - c_{4} } \right\|^{2}. \end{array} $$
(28)

Then

$$ \begin{array}{@{}rcl@{}} \bar F &=& F_{A} + \lambda_{1} a_{1} s_{1} \left\| {I(x_{0},y_{0}) - c_{1} } \right\|^{2} + F_{B} + \lambda_{2} a_{2} s_{2} \left\| {I(x_{0},y_{0}) - c_{2} } \right\|^{2} \\ &&+ F_{C} + \lambda_{3} a_{3} s_{3} \left\| {I(x_{0},y_{0}) - c_{3} } \right\|^{2} + F_{D} + \lambda_{4} a_{4} s_{4} \left\| {I(x_{0},y_{0}) - c_{4} } \right\|^{2} \\ &=& F + \lambda_{1} a_{1} s_{1} \left\| {I(x_{0},y_{0}) - c_{1} } \right\|^{2} + \lambda_{2} a_{2} s_{2} \left\| {I(x_{0},y_{0}) - c_{2} } \right\|^{2} \\ &&+ \lambda_{3} a_{3} s_{3} \left\| {I(x_{0},y_{0}) - c_{3} } \right\|^{2} + \lambda_{4} a_{4} s_{4} \left\| {I(x_{0},y_{0}) - c_{4} } \right\|^{2} \\ {\varDelta} F &=& \lambda_{1} a_{1} s_{1} \left\| {I(x_{0},y_{0}) - c_{1} } \right\|^{2} + \lambda_{2} a_{2} s_{2} \left\| {I(x_{0},y_{0}) - c_{2} } \right\|^{2} \\ &&+ \lambda_{3} a_{3} s_{3} \left\| {I(x_{0},y_{0}) - c_{3} } \right\|^{2} + \lambda_{4} a_{4} s_{4} \left\| {I(x_{0},y_{0}) - c_{4} } \right\|^{2} \end{array} $$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A. Fuzzy energy based active contour model for multi-region image segmentation. Multimed Tools Appl 79, 1535–1554 (2020). https://doi.org/10.1007/s11042-019-08207-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08207-7

Keywords

Navigation