Skip to main content
Log in

Image Retrieval by Integrating Global Correlation of Color and Intensity Histograms with Local Texture Features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Research on Content-Based Image Retrieval is being done to improvise existing methods. Most of the techniques that were proposed use color and texture features independently. In this paper, to get the correspondence between color and texture, we use congruence on Hue, Saturation, and Intensity by using inter-channel voting. Gray Level Co-occurrence Matrix (GLCM) on Diagonally Symmetric Pattern is computed to get texture features of an image. The similarity metrics between two images is computed using congruence and GLCM. To measure the performance; Average Precision Rate (APR), Average Recall Rate (ARR), F-measure, Average Normalized Modified Retrieval Rank (ANMRR) are calculated. In addition to these parameters, one more parameter has been proposed: Total Minimum Retrieval Epoch (TMRE) to calculate the average number of images to be traversed for each query image to get all the images of that category. To validate the performance of the proposed method, it has been applied to six image databases: Corel-1 K, Corel-5 K, Corel-10 K, VisTex, STex, and Color Brodatz. The results of most of the databases show significant improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Al-Shemarry MS, Li Y, Abdulla S (2019) An Efficient Texture Descriptor for the Detection of License Plates from Vehicle Images in Difficult Conditions. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2019.2897990

  2. Aptoula E, Lefevre S (2009) Morphological Description of Color Images for Content-Based Image Retrieval. IEEE Trans Image Process 18(11):2505–2517. https://doi.org/10.1109/TIP.2009.2027363

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhunia AK, Bhattacharyya A, Banerjee P, Roy PP, Murala S (2018) A Novel Feature Descriptor for Image Retrieval by Combining Modified Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern. Preprint Submitted. arXiv preprint arXiv:1801.00879.

  4. Chen JJ, Rong CS, Grimson WEL, Liu JL, Shiue DH (2011) Object Segmentation of Database Images by Dual Multiscale Morphological Reconstructions and Retrieval Applications. IEEE Trans Image Process 21(2):828–843. https://doi.org/10.1109/TIP.2011.2166558

    Article  MathSciNet  MATH  Google Scholar 

  5. Chun YD, Kim NC, Jang IH (2008) Content-based image retrieval using multiresolution color and texture features. IEEE Trans Multimedia 10(6):1073–1084. https://doi.org/10.1109/TMM.2008.2001357

    Article  Google Scholar 

  6. Clausi DA (2002) An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sens 28(1):45–62. https://doi.org/10.5589/m02-004

    Article  Google Scholar 

  7. Connolly C, Fleiss T (1997) A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans Image Process 6(7):1046–1048. https://doi.org/10.1109/83.597279

    Article  Google Scholar 

  8. Daschiel H, Datcu M (2005) Design and Evaluation of Human–Machine Communication for Image Information Mining. IEEE Trans Multimedia 7(6):1030–1046. https://doi.org/10.1109/TMM.2005.858383

    Article  MATH  Google Scholar 

  9. Dong-Chen, Abdelmounaime Safia, Multiband Texture (MBT) database, https://multibandtexture. recherche.usherbrooke.ca/index.html (Accessed 14 April 2019).

  10. Gnaneswara Rao N, Sravani T, Vijaya Kumar V (2014) OCRM: Optimal Cost Region Matching Similarity Measure for Region Based Image Retrieval. Int J Multimed Ubiquit Eng 9(4):327–342. https://doi.org/10.14257/ijmue.2014.9.4.34

    Article  Google Scholar 

  11. Gonzalez RC, Woods RE (2018) Digital Image Processing – 4th Edition. Pearson, New York, USA

    Google Scholar 

  12. Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  13. Heikkila M, Pietikainen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In Computer vision, graphics and image processing Springer, Berlin, Heidelberg. 58–69. https://doi.org/10.1016/j.neucom.2015.03.015.

  14. Hu R, Barnard M, Collomosse J (2010) Gradient field descriptor for sketch based retrieval and localization. IEEE International Conference on Image Processing, 1025–1028.

  15. Hu RX, Jia W, Ling H, Zhao Y, Gui J (2014) Angular pattern and binary angular pattern for shape retrieval. IEEE Trans Image Process 23(3):1118–1127. https://doi.org/10.1109/TIP.2013.2286330

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. Computer Vision and Pattern Recognition Proceedings, IEEE Computer Society Conference, 762–768

  17. Joblove GH, Greenberg D (1978) Color Space for Computer Graphics. Program of Computer Graphics, Cornell University, 20–25.

  18. Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, Santosh KC, Vajda S, Antani S, Folio L, Thoma GR (2015) Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int J Comput Assist Radiol Surg 11(1):99–106. https://doi.org/10.1007/s11548-015-1242-x

    Article  Google Scholar 

  19. Kekre HB, Thepade S, Das RKK, Ghosh S (2012) Image Classification using Block Truncation Coding with Assorted Color Spaces. Int J Electr Comput Syst Eng 44(6):0975–8887. https://doi.org/10.5120/6265-8418

    Article  Google Scholar 

  20. Konstantinidis K, Gasteratos A, Andreadis I (2005) A Image retrieval based on fuzzy color histogram processing. Opt Commun 248(4–6):375–386. https://doi.org/10.1016/j.optcom.2004.12.029

    Article  Google Scholar 

  21. Roland Kwitt, Salzburg Texture Image Database, http://www.wavelab.at/sources/STex/, (Accessed 14 April 2019).

  22. Li B, Sun F, Zhang Y (2019) Building Recognition based on Sparse Representation of Spatial Texture and Color Features Digital Object Identifier. Special Section On Theory, Algorithms, And Applications Of Sparse Recovery 7: 37220–37227. DOI: https://doi.org/10.1109/ACCESS.2019.2905304.

  23. Lin CH, Chen RT, Chan YK (2009) A smart content-based image retrieval system based on color and texture feature. Image Vis Comput 27(6):658–665. https://doi.org/10.1016/j.imavis.2008.07.004

    Article  Google Scholar 

  24. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95. https://doi.org/10.1109/TCOM.1980.1094577

    Article  Google Scholar 

  25. Lipo LZ, Lin WW (2011) Semisupervised Biased Maximum Margin Analysis for Interactive Image Retrieval. IEEE Trans Image Process 21(4):2294–2308. https://doi.org/10.1109/TIP.2011.2177846

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu L, Chen J, Zhao G, Fieguth P, Chen X, Pietikainen M (2019) Texture Classification in Extreme Scale Variations using GANet. IEEE Trans Image Process DOI: arXiv:1802.04441v1.

  27. Guang-Hai Liu et al., Corel-10k dataset, http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx (Accessed 14 April 2019).

  28. Martínez JC, Hidalgo JMS, Jimenez PMM, Sanchez D (2017) Fuzzy Color Spaces: A Conceptual Approach to Color Vision. IEEE Trans Fuzzy Syst 25(5):1264–1280. https://doi.org/10.1109/TFUZZ.2016.2612259

    Article  Google Scholar 

  29. Mathew SP, Balas VE, Zachariah KP (2015) A content-based image retrieval system based on convex hull geometry. Acta Polytechnica Hungarica 12(1):103–116. https://doi.org/10.12700/APH.12.1.2015.1.7

    Article  Google Scholar 

  30. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886. https://doi.org/10.1109/TIP.2012.2188809

    Article  MathSciNet  MATH  Google Scholar 

  31. Naidu RR, Jampana P, Sastry CS (2016) Deterministic Compressed Sensing Matrices: Construction via Euler Squares and Applications. IEEE Trans Signal Process 64(14):3566–3575. https://doi.org/10.1109/TSP.2016.2550020

    Article  MathSciNet  MATH  Google Scholar 

  32. Jens-Rainer Ohm, Leszek Cieplinski, Heon Jun Kim, Santhana Krishnamachari, B. S. Manjunath, Dean S. Messing, Akio Yamada (2001) The MPEG-7 Color Descriptors, In Manjunath B.S. et al. (ed) Introduction to MPEG 7: Multimedia Content Description Language, John Wiley, and Sons, England, pp. 187–202.

  33. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  MATH  Google Scholar 

  34. Osowski S (2002) Fourier and wavelet descriptors for shape recognition using neural networks-a comparative study. Pattern Recogn 35(9):1949–1957. https://doi.org/10.1016/S0031-3203(01)00153-4

    Article  MATH  Google Scholar 

  35. Alex Sandy Pentland and Ted Adelson, VisTex Dataset, http://vismod.media.mit.edu/pub/VisTex/, (Accessed 14 April 2019).

  36. Quellec G, Lamard M, Bekri L, Cazuguel G, Roux C, Cochener B (2010) Medical Case Retrieval from a Committee of Decision Trees. IEEE Trans Inf Technol Biomed 14(5):1227–1235. https://doi.org/10.1109/TITB.2010.2053716

    Article  MATH  Google Scholar 

  37. Ramos J, Kockelkorn TTJP, Ramos I, Ramos R, Grutters J, Viergever MA, Ginneken BM, Campilho A (2016) Content-Based Image Retrieval by Metric Learning From Radiology Reports: Application to Interstitial Lung Diseases. J Biomed Health Inform 20(1):281–292. https://doi.org/10.1109/JBHI.2014.2375491

    Article  Google Scholar 

  38. Santosh KC, Antani S (2018) Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities? IEEE Trans Med Imaging 37(5):1168–1177. https://doi.org/10.1109/TMI.2017.2775636

    Article  Google Scholar 

  39. Santosh KC, Wendling L, Antani S, Thoma GR (2016) Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell Syst 31(3):66–75. https://doi.org/10.1109/MIS.2016.24

    Article  Google Scholar 

  40. Santosh KC, Vajda S, Antani S, Thoma GR (2016) Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int J Comput Assist Radiol Surg 11(9):1637–1646. https://doi.org/10.1007/s11548-016-1359-6

    Article  Google Scholar 

  41. Singha M, Hemachandran K (2012) Content based image retrieval using color and texture. Signal Image Process 3(1):39–57. https://doi.org/10.5121/sipij.2012.3104

    Article  Google Scholar 

  42. Singha M, Hemachandran K (2012) Content Based Image Retrieval using Color and Texture. Signal Image Process 3(1):239–242. https://doi.org/10.1109/ICSIP.2010.5697476

    Article  Google Scholar 

  43. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380. https://doi.org/10.1109/34.895972

    Article  Google Scholar 

  44. Strat TM (1993) Employing contextual information in computer vision. DARPA93, 217–229

  45. Swain MJ, Ballard DH, Rochester (1991) Color Indexing. Int J Comput Vis 7(1):11–32. https://doi.org/10.1007/BF00130487

    Article  Google Scholar 

  46. Tominaga S (1992) Color classification of natural color images. Color Res Appl 17(4):230–239. https://doi.org/10.1002/col.5080170405

    Article  Google Scholar 

  47. Vajda SA, Karargyris A, Jaeger S, Santosh KC, Candemir S, Xue Z, Antani S, Thoma G (2018) Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. J Med Syst 42(8):146. https://doi.org/10.1007/s10916-018-0991-9

    Article  Google Scholar 

  48. Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269. https://doi.org/10.1016/j.neucom.2015.03.015

    Article  Google Scholar 

  49. Wan X, Kuo CCJ (1998) A new approach to image retrieval with hierarchical color clustering. IEEE Trans Circuits Syst Video Technol 8(5):628–643. https://doi.org/10.1109/76.718509

    Article  Google Scholar 

  50. Wang JZ, Modeling objects, Concepts, Aesthetics, and Emotions in Big Visual Data. http://wang.ist.psu.edu/docs/home.shtml (Accessed 14 April 2019).

  51. Wang XY, Zhang BB, Yang HY (2012) Content-based image retrieval by integrating color and texture features. Multimed Tools Appl 68(3):545–569. https://doi.org/10.1007/s11042-012-1055-7

  52. Xia Z, Zhu Y, Sun X, Qin Z, Ren K (2015) Towards Privacy-Preserving Content-Based Image Retrieval in Cloud Computing. IEEE Trans Cloud Comput 6(1):276–286. https://doi.org/10.1109/TCC.2015.2491933

  53. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus Local Binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544. https://doi.org/10.1109/TIP.2009.2035882

    Article  MathSciNet  MATH  Google Scholar 

  54. Zheng Y, Jiang Z, Zhang H, Xie F, Ma Y, Shi H (2018) Histopathological Whole Slide Image Analysis Using Context-Based CBIR. IEEE Trans Med Imaging 37(7):1641–1652. https://doi.org/10.1109/TMI.2018.2796130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. N. Raju.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanaparthi, S.K., Raju, U.S.N., Shanmukhi, P. et al. Image Retrieval by Integrating Global Correlation of Color and Intensity Histograms with Local Texture Features. Multimed Tools Appl 79, 34875–34911 (2020). https://doi.org/10.1007/s11042-019-08029-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08029-7

Keywords

Navigation