Visual analytics for spatiotemporal events

Abstract

Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user’ perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts’ perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Notes

  1. 1.

    The website: www.timeviz.net

  2. 2.

    VAST prototype can be tested online at http://staresearch.net/resource#prototypes.

  3. 3.

    http://mathworld.wolfram.com/z-Score.html

References

  1. 1.

    Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of time-oriented data. Springer Science & Business Media

  2. 2.

    Andrienko G, Andrienko N, Bak P, Keim D, Kisilevich S, Wrobel S (2011) A conceptual framework and taxonomy of techniques for analyzing movement. J Vis Lang Comput 22(3):213–232

    Google Scholar 

  3. 3.

    Andrienko G, Andrienko N, Bosch H, Ertl T, Fuchs G, Jankowski P, Thom D (2013) Thematic patterns in georeferenced tweets through space-time visual analytics. Comput Sci Eng 15(3):72–82

    Google Scholar 

  4. 4.

    Andrienko N, Andrienko G (2004) Interactive visual tools to explore spatio-temporal variation. In: Proceedings of the working conference on advanced visual interfaces. ACM, pp 417–420

  5. 5.

    Andrienko N, Andrienko G (2006) Exploratory analysis of spatial and temporal data: a systematic approach. Springer, Berlin

    Google Scholar 

  6. 6.

    Bédard Y, Rivest S, Proulx MJ (2007) Spatial. online analytical. processing (solap): concepts, architectures, and solutions. Data warehouses and OLAP: concepts, architectures, and solutions, Idea Group Inc, pp 298–319

  7. 7.

    Bertin J, Berg WJ, Wainer H (1983) Semiology of graphics: diagrams, networks, maps, vol 1. University of Wisconsin press Madison

  8. 8.

    Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control, Wiley, New York

  9. 9.

    Cardoso D, Alves R, Pires JM, Birra F, Silva R (2017) Gisplay-extensible web api for thematic maps with webgl. In: International conference on computational science and its applications. Springer, pp 674–689

  10. 10.

    Chae J, Thom D, Bosch H, Jang Y, Maciejewski R, Ebert DS, Ertl T (2012) Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition. In: 2012 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 143–152

  11. 11.

    Chen H, Chung W, Xu JJ, Wang G, Qin Y, Chau M (2004) Crime data mining: a general framework and some examples. Computer 37(4):50–56

    Google Scholar 

  12. 12.

    Cho I, Dou W, Wang DX, Sauda E, Ribarsky W (2016) Vairoma: a visual analytics system for making sense of places, times, and events in roman history. IEEE Trans Vis Comput Graph 22(1):210–219

    Google Scholar 

  13. 13.

    Dykes J, MacEachren A, Kraak M (2005) Exploring geovisualization. No vol 1 in International Cartographic Association. Elsevier, Amsterdam

    Google Scholar 

  14. 14.

    Ebdon D (1985) Statistics in geography. Blackwell, Oxford

    Google Scholar 

  15. 15.

    Ferreira N, Poco J, Vo HT, Freire J, Silva CT (2013) Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips. IEEE Trans Vis Comput Graph 19(12):2149–2158

    Google Scholar 

  16. 16.

    Forlines C, Wittenburg K (2010) Wakame: sense making of multi-dimensional spatial-temporal data. In: Proceedings of the international conference on advanced visual interfaces. ACM, pp 33–40

  17. 17.

    Fuchs G, Schumann H (2004) Visualizing abstract data on maps. In: 2004 Proceedings. Eighth international conference on information visualisation, 2004. IV. IEEE, pp 139–144

  18. 18.

    Gabriel E (2014) Estimating second-order characteristics of inhomogeneous spatio-temporal point processes. Methodol Comput Appl Probab 16(2):411–431

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Gabriel E, Rowlingson B, Diggle P (2013) stpp: an r package for plotting, simulating and analyzing spatio-temporal point patterns. J Stat Softw 53(2):1–29

    Google Scholar 

  20. 20.

    Gao Y, Wang S, Padmanabhan A, Yin J, Cao G (2018) Mapping spatiotemporal patterns of events using social media: a case study of influenza trends. Int J Geogr Inf Sci 32(3):425–449

    Google Scholar 

  21. 21.

    Gatalsky P, Andrienko N, Andrienko G (2004) Interactive analysis of event data using space-time cube. In: 2004 Proceedings. Eighth international conference on information visualisation, 2004. IV. IEEE, pp 145–152

  22. 22.

    Getis A (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Google Scholar 

  23. 23.

    Goodwin S, Dykes J, Slingsby A, Turkay C (2016) Visualizing multiple variables across scale and geography. IEEE Trans Vis Comput Graph 22(1):599–608

    Google Scholar 

  24. 24.

    Guo D, Chen J, MacEachren AM, Liao K (2006) A visualization system for space-time and multivariate patterns (vis-stamp). IEEE Trans Vis Comput Graph 12(6):1461–1474

    Google Scholar 

  25. 25.

    Hadlak S, Tominski C, Schulz HJ, Schumann H (2010) Visualization of attributed hierarchical structures in a spatiotemporal context. Int J Geogr Inf Sci 24 (10):1497–1513

    Google Scholar 

  26. 26.

    Hering AS, Bell CL, Genton MG (2009) Modeling spatio-temporal wildfire ignition point patterns. Environ Ecol Stat 16(2):225–250

    MathSciNet  Google Scholar 

  27. 27.

    Jacquez GM (1996) A k nearest neighbour test for space–time interaction. Stat Med 15(18):1935–1949

    Google Scholar 

  28. 28.

    Kapler T, Wright W (2005) Geotime information visualization. Inf Vis 4 (2):136–146

    Google Scholar 

  29. 29.

    Keim D, Andrienko G, Fekete JD, Gȯrg C, Kohlhammer J, Melançon G (2008) Visual analytics: definition, process, and challenges. In: Kerren A, Stasko J, Fekete JD, North C (eds) Information visualization, lecture notes in computer science, vol 4950. Springer, Berlin, pp 154–175

  30. 30.

    Kisilevich S, Krstajic M, Keim D, Andrienko N, Andrienko G (2010) Event-based analysis of people’s activities and behavior using flickr and panoramio geotagged photo collections. In: 2010 14th international conference information visualisation (IV). IEEE, pp 289–296

  31. 31.

    Knox EG, Bartlett MS (1964) The detection of space-time interactions. Appl Stat 13:25–30

    Google Scholar 

  32. 32.

    Kraak MJ, Ormeling F (2003) Cartography: visualisation of geospatial data. Essex: Pearson Education Limited

  33. 33.

    Lahouari K, Jean-Yves B, Paule-Annick D, Hélène M, Cécile SM (2014) Représenter les dynamiques des territoires : un état des lieux, de nouveaux enjeux. http://www.map.cnrs.fr/jyb/puca/

  34. 34.

    Leipnik MR, Albert DP (2003) GIS in law enforcement: implementation issues and case studies. CRC Press, London

    Google Scholar 

  35. 35.

    Li H, Zhang J, Sun J (2016a) A visual analytics approach for deterioration risk analysis of ancient frescoes. J Vis 19(3):529–542

    Google Scholar 

  36. 36.

    Li M, Bao Z, Sellis T, Yan S, Zhang R (2018) Homeseeker: a visual analytics system of real estate data. J Vis Lang Comput 45:1–16

    Google Scholar 

  37. 37.

    Li S, Dragicevic S, Castro FA, Sester M, Winter S, Coltekin A, Pettit C, Jiang B, Haworth J, Stein A et al (2016b) Geospatial big data handling theory and methods: a review and research challenges. ISPRS J Photogramm Remote Sens 115:119–133

    Google Scholar 

  38. 38.

    Lins L, Klosowski JT, Scheidegger C (2013) Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Trans Vis Comput Graph 19(12):2456–2465

    Google Scholar 

  39. 39.

    MacEachren AM, Jaiswal A, Robinson AC, Pezanowski S, Savelyev A, Mitra P, Zhang X, Blanford J (2011) Senseplace2: Geotwitter analytics support for situational awareness. In: 2011 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 181–190

  40. 40.

    Maciejewski R, Rudolph S, Hafen R, Abusalah A, Yakout M, Ouzzani M, Cleveland WS, Grannis SJ, Ebert DS (2010) A visual analytics approach to understanding spatiotemporal hotspots. IEEE Trans Vis Comput Graph 16(2):205–220

    Google Scholar 

  41. 41.

    Malik A, Maciejewski R, Collins TF, Ebert DS (2010) Visual analytics law enforcement toolkit. In: 2010 IEEE international conference on technologies for homeland security (HST). IEEE, pp 222–228

  42. 42.

    Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220

    Google Scholar 

  43. 43.

    Miller HJ, Han J (2009) Geographic data mining and knowledge discovery. Chapman & Hall/CRC data mining and knowledge discovery series. CRC Press, London

    Google Scholar 

  44. 44.

    Møller J, Ghorbani M (2010) Second-order analysis of structured inhomogeneous spatio-temporal point processes. Tech rep., Department of Mathematical Sciences, Aalborg University

  45. 45.

    Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    MathSciNet  MATH  Google Scholar 

  46. 46.

    Nelson JK, Brewer CA (2017) Evaluating data stability in aggregation structures across spatial scales: revisiting the modifiable areal unit problem. Cartogr Geogr Inf Sci 44(1):35–50

    Google Scholar 

  47. 47.

    Openshaw S (1984) The modifiable areal unit problem. Concepts and techniques in modern geography

  48. 48.

    Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20(6):328–336

    Google Scholar 

  49. 49.

    Robinson AC, Peuquet DJ, Pezanowski S, Hardisty FA, Swedberg B (2016) Design and evaluation of a geovisual analytics system for uncovering patterns in spatio-temporal event data. Cartogr Geogr Inf Sci 44:1–13

    Google Scholar 

  50. 50.

    Roddick JF, Spiliopoulou M (1999) A bibliography of temporal, spatial and spatio-temporal data mining research. ACM SIGKDD Explorations Newsletter 1 (1):34–38

    MATH  Google Scholar 

  51. 51.

    Scherr M (2008) Multiple and coordinated views in information visualization. Trends in Information Visualization 38:1–33

    Google Scholar 

  52. 52.

    Shanbhag P, Rheingans P et al (2005) Temporal visualization of planning polygons for efficient partitioning of geo-spatial data. In: 2005 IEEE symposium on information visualization, 2005. INFOVIS, IEEE, pp 211–218

  53. 53.

    Shekhar S, Jiang Z, Ali RY, Eftelioglu E, Tang X, Gunturi V, Zhou X (2015) Spatiotemporal data mining: a computational perspective. ISPRS Int J Geo Inf 4(4):2306–2338

    Google Scholar 

  54. 54.

    Silva R, Moura-Pires J, Santos MY (2012) Spatial clustering in SOLAP systems to enhance map visualization. Int J Data Warehouse Min 8(2):23–43

    Google Scholar 

  55. 55.

    Silva R, Pires JM, Santos MY, Datia N (2016) Enhancing exploratory analysis by summarizing spatiotemporal events across multiple levels of detail. In: Sarjakoski T, Santos MY, Sarjakoski TL (eds) Geospatial data in a changing world, selected papers of the 19th AGILE conference on geographic information science, Lecture Notes in Geoinformation and Cartography, Springer. https://doi.org/10.1007/978-3-319-33783-8_13, https://link.springer.com/chapter/10.1007/978-3-319-33783-8_13

    Google Scholar 

  56. 56.

    Silva RA, Pires JM, Santos MY (2015a) A granularity theory for modelling spatio-temporal phenomena at multiple levels of detail. International Journal of Business Intelligence and Data Mining 10(1):33

    Google Scholar 

  57. 57.

    Silva RA, Pires JM, Santos MY, Leal R (2015b) Aggregating spatio-temporal phenomena at multiple levels of detail. In: AGILE 2015, Springer Science ∖mathplus business media, pp 291–308

  58. 58.

    Sips M, Kȯthur P, Unger A, Hege HC, Dransch D (2012) A visual analytics approach to multiscale exploration of environmental time series. IEEE Trans Vis Comput Graph 18(12):2899–2907

    Google Scholar 

  59. 59.

    Swedberg B, Peuquet D (2016) Perse visual analytics for calendar related spatiotemporal periodicity detection and analysis. GeoInformatica 21:1–21

    Google Scholar 

  60. 60.

    Swedberg B, Peuquet D (2017) An evaluation of a visual analytics prototype for calendar-related spatiotemporal periodicity detection and analysis. Cartographica: The International Journal for Geographic Information and Geovisualization 52(1):63–79

    Google Scholar 

  61. 61.

    Thakur S, Rhyne TM (2009) Data vases: 2d and 3d plots for visualizing multiple time series. In: International symposium on visual computing. Springer, pp 929–938

  62. 62.

    Thom D, Bosch H, Koch S, Wörner M, Ertl T (2012) Spatiotemporal anomaly detection through visual analysis of geolocated twitter messages. In: 2012 IEEE Pacific visualization symposium (pacificvis), IEEE, pp 41–48

  63. 63.

    Tominski C, Schulz HJ (2012) The great wall of space-time. In: Goesele M, Grosch T, Theisel H, Toennies K, Preim B (eds) Vision, modeling and visualization, the Eurographics association. https://doi.org/10.2312/PE/VMV/VMV12/199-206

  64. 64.

    Tominski C, Schulze-Wollgast P, Schumann H (2005) 3d information visualization for time dependent data on maps. In: Ninth international conference on information visualisation, 2005. Proceedings. IEEE, pp 175–181

  65. 65.

    Tversky B, Morrison JB, Betrancourt M (2002) Animation: can it facilitate? Int J Hum Comput Stud 57(4):247–262

    Google Scholar 

  66. 66.

    Wang D, Ding W, Lo H, Morabito M, Chen P, Salazar J, Stepinski T (2013) Understanding the spatial distribution of crime based on its related variables using geospatial discriminative patterns. Comput Environ Urban Syst 39:93–106

    Google Scholar 

  67. 67.

    Weaver C (2010) Cross-filtered views for multidimensional visual analysis. IEEE Trans Vis Comput Graph 16(2):192–204

    Google Scholar 

  68. 68.

    Yao JT, Vasilakos AV, Pedrycz W (2013) Granular computing: perspectives and challenges. IEEE Transactions on Cybernetics 43(6):1977–1989

    Google Scholar 

  69. 69.

    Yin J, Gao Y, Du Z, Wang S (2016) Exploring multi-scale spatiotemporal twitter user mobility patterns with a visual-analytics approach. ISPRS Int J Geo Inf 5 (10):187

    Google Scholar 

  70. 70.

    Zhang L, Stoffel A, Behrisch M, Mittelstadt S, Schreck T, Pompl R, Weber S, Last H, Keim D (2012) Visual analytics for the big data era—a comparative review of state-of-the-art commercial systems. In: 2012 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 173–182

Download references

Acknowledgments

This work has been supported by FCT - Fundação para a Ciência e Tecnologia MCTES, UID/CEC/04516/2013 (NOVA LINCS), UID/CEC/00319/2019 (ALGORITMI), and UID/CEC/50021/2019 (INESC-ID).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuno Datia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix : Abstracts implemented

Appendix : Abstracts implemented

Measure Description Global Spatial Temporal
Bray-Curtis Calculates the similarity   
Similarity for based on the number of    
Synthesis granular synthesis, between    
  consecutive temporal grains    
Correlation Index Correlation between the   
For Atoms number of atoms of    
  consecutive temporal grains    
Correlation Index Correlation between the   
For Synthesis number of granular    
  synthesis of consecutive    
  temporal grains    
Dice Similarity Dice index (event / no   
(Binary) event) between conse-    
  cutive temporal grains    
Jaccard Similarity Jaccard index (event / no   
(Binary) event) between conse-    
  cutive temporal grains    
Gower Similarity Similarity (event / no   
(Binary) event) between conse-    
  cutive temporal grains    
Moran’s I Calculates the spatial   
  autocorrelation among    
  nearby locations, given    
  a domain specific variable    
Nearest Neighbor Measures the level of  
(NN) clustering    
Z-score Nearest Measures the z-score  
Neighbor (z-NN) of the level of NN    
Spatial Scope Measures the spatial   
  extent    
Spatial Consecutive Measures the distance   
Distance between between consecutive    
Centers of Mass centers of mass    
Center’s Mass Measures the position  
Positioning of the centers of mass    
Reduction Rate (%) Measures the reduction   
  of atoms used    
Average Atoms in Measures the average of   
spatiotemporal atoms indexed by spatio-    
granules (%) temporal granules    
Collision Rate (%) Percentage of spatiotemporal
  granules with events, where    
  atom collisions exists    
Occupation Rate (%) Percentage of granules
  with events    
Granular Mantel Measures the spatio-   
Bounded and temporal interaction    
Normalized     
Frequency Rate (%) Percentage of events  
  happened in granules    
Bray-Curtis Calculates the similarity   
Similarity based on the counts of    
for Atoms atoms, between conse-    
  cutive temporal grains    

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, R.A., Pires, J.M., Datia, N. et al. Visual analytics for spatiotemporal events. Multimed Tools Appl 78, 32805–32847 (2019). https://doi.org/10.1007/s11042-019-08012-2

Download citation

Keywords

  • Data visualization
  • Spatiotemporal patterns
  • Multiple levels of detail
  • Visual analytics