Skip to main content
Log in

Copy move forgery detection based on keypoint and patch match

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Copy move has become a simple and effective operation for image forgeries due to the advancement of image editing software, which is still challenging to be detected. In this paper, a novel method is proposed for copy move forgery detection based on Keypoint and Patch Match. Local Intensity Order Pattern (LIOP), a robust keypoint descriptor, is combined with SIFT to obtain reliable keypoints. After using g2NN to match the extracted keypoints, a new matched keypoint pair description model and a density grid-based filtering strategy are applied to removing the redundancy matched keypoint pairs. Finally an enhanced patch match approach is utilized to examine the matched keypoint pairs to accurately determine the existence of forgery. Compared with the state-of-the-art methods, the proposed method can detect copy move region more precisely according to the experimental result, even when detected objects are distorted by some processing such as rotation, scaling, JPEG compression and additional noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amerini I, Ballan L, Caldelli R, Bimbo AD, Serra G (2011) A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inf Forens Secur 6(3):1099–1110

    Google Scholar 

  2. Amerini I, Ballan L, Caldelli R, Bimbo AD, Tongo LD, Serra G (2013) Copy-move forgery detection and localization by means of robust clustering with J-Linkage. Signal Process: Image Commun 28(6):659–669

    Google Scholar 

  3. Ardizzone E, Bruno A, Mazzola G (2015) Copy-move forgery detection by matching triangles of keypoints. IEEE Trans Inf Forens Secur 10:2084–2094

    Google Scholar 

  4. Barnes C, Shechtman E, Finkelstein A, Goldman DB (2009) PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans Graph Proc SIGGRAPH 28(3):1–11

    Google Scholar 

  5. Bay H, Ess A, Tuytelaars T, Gool LV (2006) SURF: speeded up robust features. In: European conference on computer vision, pp 404–417

    Google Scholar 

  6. Bayram S, Sencar HT, Memon N (2009) An efficient and robust method for detecting copy-move forgery. In: IEEE International conference on acoustics, speech and signal processing, pp 1053–1056

  7. Beis JS, Lowe DG (1997) Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: International conference on computer vision and pattern recognition, pp 1000–1006

  8. Bedi G, Venayagamoorthy G, Singh R, Brooks R, Wang K-C (2018) Review of internet of things (iot) in electric power and energy systems. IEEE Internet Things J PP:1–1. https://doi.org/10.1109/JIOT.2018.2802704

    Article  Google Scholar 

  9. Cao G, Zhao Y, Ni R, Li X (2014) Contrast enhancement-based forensics in digital images. IEEE Trans Inf Forens Secur 9(3):515–525. https://doi.org/10.1109/TIFS.2014.2300937

    Article  Google Scholar 

  10. Chen L, Lu W, Ni J, Sun W, Huang J (2013) Region duplication detection based on harris corner points and step sector statistics. J Vis Commun Image Represent 24(3):244–254

    Google Scholar 

  11. Chen J, Wei L, Fang Y, Liu X, Yeung Y, Xue Y (2018) Binary image steganalysis based on local texture pattern. J Vis Commun Image Represent 55:149–156

    Google Scholar 

  12. Chen J, Lu W, Yeung Y, Xue Y, Liu X, Lin C, Yue Z (2018) Binary image steganalysis based on distortion level co-occurrence matrix. Cmc-Comput Mater Continua 55(2):201–211

    Google Scholar 

  13. Chen X, Weng J, Lu W, Xu J (2018) Multi-gait recognition based on attribute discovery. IEEE Trans Pattern Anal Mach Intell 40(7):1697–1710

    Google Scholar 

  14. Chen X, Weng J, Lu W, Xu J, Weng J (2018) Deep manifold learning combined with convolutional neural networks for action recognition. IEEE Trans Neural Netw 29:3938–3952

    Google Scholar 

  15. Christlein V, Riess C, Jordan J, Riess C, Angelopoulou E (2012) An evaluation of popular copy-move forgery detection approaches. IEEE Trans Inf Forens Secur 7(6):1841–1854

    Google Scholar 

  16. Cozzolino D, Poggi G, Verdoliva L (2015) Efficient dense-field copy move forgery detection. IEEE Trans Inf Forens Secur 10(11):2284–2297

    Google Scholar 

  17. Emam M, Qi H, Zhang H (2018) Two-stage keypoint detection scheme for region duplication forgery detection in digital images. J Forensic Sci 63(1):102–111

    Google Scholar 

  18. Fan B, Wu F, Hu Z (2011) Aggregating gradient distributions into intensity orders: a novel local image descriptor. In: CVPR 2011, vol 1, pp 2377–2384

  19. Fan Y, Li J, Wei L, Jian W (2017) Copy-move forgery detection based on hybrid features. Eng Appl Artif Intel 59:73–83

    Google Scholar 

  20. Feng B, Lu W, Sun W (2015) Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans Inf Forens Secur 10(2):243–255

    Google Scholar 

  21. Feng B, Lu W, Sun W (2015) Binary image steganalysis based on pixel mesh Markov transition matrix. J Vis Commun Image Represent 26:284–295

    Google Scholar 

  22. Feng B, Lu W, Sun W (2015) Novel steganographic method based on generalized k-distance n-dimensional pixel matching. Multimed Tools Appl 74(21):9623–9646

    Google Scholar 

  23. Fridrich J, Soukal D, Lukáš J (2003) Detection of copy-move forgery in digital images. In: Digital forensic research workshop, Cleveland, pp 19–23

  24. Hu C, Xu Z, Liu Y, Mei L, Chen L, Luo X (2014) Semantic link network-based model for organizing multimedia big data. IEEE Trans Emerging Topics Comput 2(3):376–387

    Google Scholar 

  25. Huang Y, Lu W, Sun W, Long D (2011) Improved DCT-based detection of copy-move forgery in images. Forensic Sci Int 206(1-3):178–184

    Google Scholar 

  26. Huang X, Liu Z, Lu W, Liu H, Xiang S (2019) Fast and effective copy-move detection of digital audio based on auto segment. Int J Digital Crime Forensics (IJDCF) 11(2):47–62

    Google Scholar 

  27. Khotanzad A, Hong YH (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Google Scholar 

  28. Kim HS, Lee H-K (2003) Invariant image watermark using zernike moments. IEEE Trans Circ Syst Video Technol 13(8):766–775

    Google Scholar 

  29. Kumar S (2015) A fast keypoint based hybrid method for copy move forgery detection. Int J Comput Digit Syst 4(2):91–99

    Google Scholar 

  30. Lee J-C (2015) Copy-move image forgery detection based on gabor magnitude. J Vis Commun Image Represent 31(Supplement C):320–334

    Google Scholar 

  31. Li J, Lu W (2016) Blind image motion deblurring with l 0 -regularized priors. J Vis Commun Image Represent 40:14–23

    Google Scholar 

  32. Li G, Wu Q, Tu D, Sun S (2007) A sorted neighborhood approach for detecting duplicated regions in image forgeries based on DWT and SVD. In: IEEE International conference on multimedia and expo, pp 1750–1753

  33. Li L, Li S, Zhu H, Chu S-C, Roddick JF, Pan J-S (2013) An efficient scheme for detecting copy-move forged images by local binary patterns. J Inf Hiding Multimed Signal Process 4(1):46–56

    Google Scholar 

  34. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forens Secur 8(7):1091–1100

    Google Scholar 

  35. Li L, Li S, Zhu H, Wu X (2014) Detecting copy-move forgery under affine transforms for image forensics. Comput Electr Eng 40(6):1951–1962

    Google Scholar 

  36. Li J, Li X, Bin Y, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forens Secur 10(3):507–518

    Google Scholar 

  37. Li J, Fan Y, Wei L, Wei S (2017) Keypoint-based copy-move detection scheme by adopting mscrs and improved feature matching. Multimed Tools Appl 76 (20):20483–20497

    Google Scholar 

  38. Li J, Lu W, Weng J, Mao Y, Li G (2018) Double jpeg compression detection based on block statistics. Multimed Tools Appl 77(24):31895–31910

    Google Scholar 

  39. Lin C, Lu W, Huang X, Liu K, Sun W, Lin H, Tan Z (2018) Copy-move forgery detection using combined features and transitive matching. Multimedia Tools and Applications

  40. Lin C, Lu W, Sun W, Zeng J, Xu T, Lai J-H (2018) Region duplication detection based on image segmentation and keypoint contexts. Multimed Tools Appl 77(11):14241–14258

    Google Scholar 

  41. Liu Z, Lu W (2017) Fast copy-move detection of digital audio. In: 2017 IEEE Second international conference on data science in cyberspace (DSC), vol 1. IEEE, pp 625–629

  42. Liu X, Lu W, Zhang Q, Huang J, Shi Y (2019) Downscaling factor estimation on pre-jpeg compressed images. IEEE Trans Circ Syst Video Technol PP (99):1–1. https://doi.org/10.1109/TCSVT.2019.2893353

    Article  Google Scholar 

  43. Liu X, Lu W, Liu W, Luo S, Liang Y, Li M (2019) Image deblocking detection based on a convolutional neural network. IEEE Access 7:26432–26439. https://doi.org/10.1109/ACCESS.2019.2901020

    Article  Google Scholar 

  44. Lowe DG (1999) Object recognition from local scale-invariant features. In: IEEE International conference on computer vision, vol 2, pp 1150–1157

  45. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Google Scholar 

  46. Lu W, He L, Yeung Y, Xue Y, Liu H, Feng B (2018) Secure binary image steganography based on fused distortion measurement. IEEE Trans Circ Syst Video Technol, 1–1. https://doi.org/10.1109/TCSVT.2018.2852702

    Google Scholar 

  47. Luo X, Song X, Li X, Zhang W, Lu J, Yang C, Liu F (2016) Steganalysis of hugo steganography based on parameter recognition of syndrome-trellis-codes. Multimed Tools Appl 75(21):13557–13583

    Google Scholar 

  48. Ma Y, Luo X, Li X, Bao Z, Zhang Y (2019) Selection of rich model steganalysis features based on decision rough set α -positive region reduction. IEEE Trans Circ Syst Vid Technol 29 (2):336–350. https://doi.org/10.1109/TCSVT.2018.2799243

    Article  Google Scholar 

  49. Mahdian B, Saic S (2007) Detection of copy-move forgery using a method based on blur moment invariants. Forensic Sci Int 171(2):180–189

    Google Scholar 

  50. Muhammad K, Ahmad J, Farman H, Jan Z, Sajjad M, Baik SW (2015) A secure method for color image steganography using gray-level modification and multi-level encryption. KSII Trans Internet Inf Syst 9(5):1938–1962

    Google Scholar 

  51. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic lsb substitution method (m-lsb-sm) using multi-level encryption and achromatic component of an image. Multimed Tools Appl 75(22):1–27

    Google Scholar 

  52. Muhammad K, Sajjad M, Baik SW (2016) Dual-level security based cyclic18 steganographic method and its application for secure transmission of keyframes during wireless capsule endoscopy. J Med Syst 40(5):1–16

    Google Scholar 

  53. Muhammad K, Ahmad J, Rehman NU, Jan Z, Sajjad M (2017) Cisska-lsb: color image steganography using stego key-directed adaptive lsb substitution method. Multimed Tools Appl 76(6):8597–8626

    Google Scholar 

  54. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2018) Image steganography using uncorrelated color space and its application for security of visual contents in online social networks. Futur Gener Comput Syst 86:951–960

    Google Scholar 

  55. Pan X, Lyu S (2010) Region duplication detection using image feature matching. IEEE Trans Inf Forens Secur 5(4):857–867

    Google Scholar 

  56. Popescu AC, Farid H (2004) Exposing digital forgeries by detecting duplicated image regions, Tech. rep., Dartmouth College, Computer Science

  57. Pun C-M, Yuan X-C, Bi X-L (2015) Image forgery detection using adaptive oversegmentation and feature points matching. IEEE Trans Inf Forens Secur 10(8):1705–1716

    Google Scholar 

  58. Ryu SJ, Lee MJ, Lee HK (2010) Detection of copy-rotate-move forgery using zernike moments. In: International conference on information hiding, vol 6387, pp 51–65

    Google Scholar 

  59. Ryu S-J, Kirchner M, Lee M-J, Lee H-K (2013) Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Trans Inf Forens Secur 8(8):1355–1370

    Google Scholar 

  60. Shivakumar BL, Baboo SS (2011) Detection of region duplication forgery in digital images using SURF. Int J Comput Sci Issues 8(4):199–205

    Google Scholar 

  61. Silva E, Carvalho T, Ferreira A, Rocha A (2015) Going deeper into copy-move forgery detection: exploring image telltales via multi-scale analysis and voting processes. J Vis Commun Image Represent 29(Supplement C):16–32

    Google Scholar 

  62. Teh CH, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell 10(4):496–513

    MATH  Google Scholar 

  63. Toldo R, Fusiello A (2008) Robust multiple structures estimation with J-Linkage. In: European conference on computer vision, pp 537–547

    Google Scholar 

  64. Wang Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. In: International conference on computer vision, pp 603–610

  65. Wang J, Li T, Shi Y, Lian S, Ye J (2017) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tools Appl 76(22):23721–23737

    Google Scholar 

  66. Wang R, Lu W, Li J, Xiang S, Zhao X, Wang J (2018) Digital image splicing detection based on markov features in QDCT and QWT domain. Int J Digit Crime Forens (IJDCF) 10(4):90–107

    Google Scholar 

  67. Wang XY, Jiao LX, Wang XB, Yang HY, Niu PP (2019) Copy-move forgery detection based on compact color content descriptor and delaunay triangle matching. Multimed Tools Appl 78(2):2311–2344

    Google Scholar 

  68. Warif NBA, Wahab AWA, Idris MYI, Salleh R, Othman F (2017) Sift-symmetry: a robust detection method for copy-move forgery with reflection attack. J Vis Commun Image Represent 46(Supplement C):219–232

    Google Scholar 

  69. Weng S, Yao Z, Pan JS, Ni R (2008) Reversible watermarking based on invariability and adjustment on pixel pairs. IEEE Signal Process Lett 15(20):721–724

    Google Scholar 

  70. Xiao H, Lu W, Li R, Zhong N, Yeung Y, Chen J, Xue F, Sun W (2019) Defocus blur detection based on multiscale svd fusion in gradient domain. J Vis Commun Image Represent 59:52–61

    Google Scholar 

  71. Xiaolong L, Bin Y, Tieyong Z (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process Publ IEEE Signal Process Soc 20(12):3524–3533

    MathSciNet  MATH  Google Scholar 

  72. Xiaolong L, Bin L, Bin Y, Tieyong Z (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22 (6):2181–2191

    MathSciNet  MATH  Google Scholar 

  73. Xin Y, Liao S, Pawlak M (2004) A multibit geometrically robust image watermark based on zernike moments. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004., vol 4, pp 861–864

  74. Xin L, Li K, Yin J (2016) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76(20):1–15

    Google Scholar 

  75. Xin L, Zheng Q, Ding L (2017) Data embedding in digital images using critical functions. Signal Processing Image Commun 58:146–156

    Google Scholar 

  76. Xin L, Guo S, Yin J, Wang H, Xiong L, Sangaiah AK (2018) New cubic reference table based image steganography. Multimed Tools Appl 77(8):10033–10050

    Google Scholar 

  77. Xinpeng Z, Shuozhong W (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783

    Google Scholar 

  78. Xinpeng Z, Shuozhong W, Zhenxing Q, Guorui F (2011) Reference sharing mechanism for watermark self-embedding. IEEE Trans Image Process 20(2):485–495

    MathSciNet  MATH  Google Scholar 

  79. Xue Y, Liu W, Lu W, Yeung Y, Liu X, Liu H (2018) Efficient halftone image steganography based on dispersion degree optimization. J Real-Time Image Proc, 1–9

  80. Yang F, Li J, Lu W, Weng J (2017) Copy-move forgery detection based on hybrid features. Eng Appl Artif Intel 59(Supplement C):73–83

    Google Scholar 

  81. Yi Z, Qin C, Zhang W, Liu F, Luo X (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111

    Google Scholar 

  82. Zhang Q, Lu W, Weng J (2016) Joint image splicing detection in dct and contourlet transform domain. J Vis Commun Image Represent 40:449–458

    Google Scholar 

  83. Zhang F, Lu W, Liu H, Xue F (2018) Natural image deblurring based on l0-regularization and kernel shape optimization. Multimed Tools Appl 77 (20):26239–26257

    Google Scholar 

  84. Zhang Q, Lu W, Wang R, Li G (2018) Digital image splicing detection based on Markov features in block dwt domain. Multimed Tools Appl 77(23):31239–31260

    Google Scholar 

  85. Zhenxing Q, Xinpeng Z, Shuozhong W (2014) Reversible data hiding in encrypted jpeg bitstream. IEEE Trans Multimed 16(5):1486–1491

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. U1736118), the Key Areas R&D Program of Guangdong (No. 2019B010136002), the Key Scientific Research Program of Guangzhou (No. 201804020068), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), Shanghai Minsheng Science and Technology Support Program (17DZ1205500), Shanghai Sailing Program (17YF1420000), the Fundamental Research Funds for the Central Universities (No. 16lgjc83 and No. 17lgjc45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Lu, W., Lin, C. et al. Copy move forgery detection based on keypoint and patch match. Multimed Tools Appl 78, 31387–31413 (2019). https://doi.org/10.1007/s11042-019-07930-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07930-5

Keywords

Navigation