Skip to main content
Log in

Robust visual tracking via a hybrid correlation filter

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a hybrid correlation filter based tracking method which depends on coupled interactions between a global filter and two local filters. Specifically, a local kernel feature with Gaussian curvature is developed to encode object appearance. Then the global filter and the two local filters independently track the target. The peak-to-sidelobe ratio (PSR) is employed to measure the reliability of the tracking results. Next, the global filter and the two local filters jointly determine the target position. In this way, the proposed hybrid model deals well with challenging situations, e.g., partial occlusion and scale changes. Experiments on large benchmark datasets show that our method performs favorably against state-of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29 (2):261–271

    Article  Google Scholar 

  2. Babenko B, Yang MH, Belongie S (2009) Visual Tracking with Online Multiple Instance Learning. In: CVPR

  3. Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  4. Bai Q, Wu Z, Sclaro S, Betke M, Monnier C (2013) Randomized ensemble tracking. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp 2040–2047

  5. Bibi A, Mueller M, Ghanem B (2016) Target response adaptation for correlation filter tracking. In: ECCV

  6. Bolme D, Beveridge JR, Draper BA, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: IEEE Computer society conference on computer vision and pattern recognition (CVPR)

  7. Danelljan M, Hager G, Khan F, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference. BMVA Press, Nottingham

  8. Danelljan M, Khan FS, Felsberg M, van de Weijer J (2014) Adaptive color attributes for real-time visual tracking. In: CVPR

  9. Danelljan M, Hager G, Khan FS, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: BMVC

  10. Danelljan M, Hager G, Khan FS, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: ICCV

  11. Danelljan M, Hager G, Khan FS, Felsberg M (2016) Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking. In: CVPR

  12. Dietterich T (2000) Ensemble methods in machine learning. In: Multiple classifier systems, pp 1–15

    Google Scholar 

  13. Dinh TB, Vo N, Medioni G (2011) Context Tracker: Exploring supporters and distracters in unconstrained environments. In: CVPR

  14. Elsey M, Esedoglu S (2009) Analogue of the total variation denoising model in the context of geometry processing. SIAM Multiscale Model Simul 7(4):1549–1573

    Article  MathSciNet  Google Scholar 

  15. Galoogahi HK, Sim T, Lucey S (2013) Multi-channel correlation filters. In: ICCV

  16. Galoogahi HK, Sim T, Lucey S (2015) Correlation filters with limited boundaries. In: CVPR

  17. Galoogahi K, Hamed AF, Lucey S (2017) Learning background-aware correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1135–1143

  18. Grabner H, Bischof H (2006) On-line boosting and vision. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, pp 260–267

  19. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proceedings of the European Conference on Computer Vision, pp 234–247

    Google Scholar 

  20. Hare S, Saffari A, Torr P (2011) Struck: Structured output tracking with kernels. In: IEEE International Conference on Computer Vision (ICCV), pp 263–270

  21. Henriques F, Caseiro R, Martins P, Batista J (2012) Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In: European conference on computer vision (ECCV), pp 702–715

    Chapter  Google Scholar 

  22. Henriques JF, Caseiro R, Martins P, Batista J (2015) High speed tracking with kernelized correlation filters. TPAMI 37(3):583–596

    Article  Google Scholar 

  23. Kalal Z, Matas J, Mikolajczyk K (2010) P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In: CVPR

  24. Kwon J, Lee K (2010) Visual tracking decomposition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp 1269–1276

  25. Kwon J, Lee KM (2011) Tracking by Sampling Trackers. In: ICCV

  26. Kwon J, Lee K (2014) Tracking by sampling and integrating multiple trackers. IEEE Trans Pattern Anal Mach Intell 36(7):1428–1441

    Article  MathSciNet  Google Scholar 

  27. Lee S-H, Seo JK (2005) Noise removal with Gauss curvature-driven diffusion. Trans Img Proc 14(7):904–909

    Article  MathSciNet  Google Scholar 

  28. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration. In: European conference on computer vision workshop

  29. Li Y, Zhu J, Hoi SC (2015) Reliable patch trackers: Robust visual tracking by exploiting reliable patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 353–361

  30. Liu B, Huang J, Yang L, Kulikowsk C (2011) Robust Tracking using Local Sparse Appearance Model and K-Selection. In: CVPR

  31. Liu T, Wnag G, Yang Q (2015) Real-time part-based visual tracking via adaptive correlation filters. In: IEEE Computer society conference on computer vision and pattern recognition (CVPR), pp 4902–4912

  32. Lu H, Lu S, Wang D, Wang S, Leung H (2012) Pixel-wise spatial pyramid-based hybrid tracking. IEEE Trans Circ Syst Video Technol 22(9):1365–1376

    Article  Google Scholar 

  33. Ma C, Huang JB, Yang X, Yang MH (2015) Hierarchical Convolutional Features for Visual Tracking. In: IEEE International conference on computer vision (ICCV), pp 3074–3082

  34. Ma C, Yang X, Zhang C, Yang MH (2015) Long-term correlation tracking. In: CVPR

  35. Ren Y, Zhang L, Suganthan P (2016) Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput Intell Mag 11(1):41–53

    Article  Google Scholar 

  36. Seo HJ, Milanfar P (2011) Face verification using the lark representation. IEEE Trans Inf Forensic Secur 6(4):1275–1286

    Article  Google Scholar 

  37. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell (TPAMI) 36(7):1442–1468

    Article  Google Scholar 

  38. Sui Y, Tang Y, Zhang L (2015) Discriminative Low-Rank tracking. In: IEEE International Conference on Computer Vision (ICCV), pp 3002–3010

  39. Wang N, Yeung D (2014) Ensemble-based tracking: Aggregating crowd sourced structured time series data. In: Proceedings of the International Conference on Machine Learning, pp 1107–1115

  40. Wang N, Shi J, Yeung D-Y, Jia J (2015) Understanding and diagnosing visual tracking systems. In: Proceedings of the IEEE International Conference on Computer Vision

  41. Wang Y, Luo X, Ding L, Hu S (2018) Visual tracking via robust Multi-Task Multi-Feature joint sparse representation multimedia tools and applications. (accepted)

    Article  Google Scholar 

  42. Wu Y, Lim J, Yang MH (2013) Online object tracking: A benchmark, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2411–2418

  43. Wu Y, Lim J, Yang MH (2015) Object Tracking Benchmark, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

  44. Xu Y, Lu Y (2015) Adaptive weighted fusion: a novel fusion approach for image classification. Neurocomputing 168:566–574

    Article  Google Scholar 

  45. Xu Y, Zhu Q, Fan Z, Wang Y, Pan J-S (2013) From the idea of sparse representation to a representation-based transformation method for feature extraction. Neurocomputing 113:168–176

    Article  Google Scholar 

  46. Xu Y, Zhong Z, Yang J, You J, Zhang D (2017) A New Discriminative Sparse Representation Method for Robust Face Recognition via l(2) Regularization. IEEE Trans Neural Netw Learn Syst 28(10):2233–2242

    Article  MathSciNet  Google Scholar 

  47. Zhang K, Zhang L, Yang MH (2012) Real-time Compressive Tracking. In: ECCV

  48. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Low-rank sparse learning for robust visual tracking. In: European Conference on Computer Vision (ECCV), pp 470–484

    Chapter  Google Scholar 

  49. Zhang J, Ma S, Sclaro S (2014) MEEM: Robust Tracking via multiple experts using entropy minimization. In: Proceedings of the European Conference on Computer Vision, pp 188–203

    Chapter  Google Scholar 

  50. Zhang T, Liu S, Xu C, Yan S, Ghanem B, Ahuja N, Yang MH (2015) Structural Sparse Tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp 150–158

  51. Zhong W, Lu H, Yang MH (2012) Robust Object Tracking via Sparsity-based Collaborative Model. In: CVPR

Download references

Acknowledgments

This paper is jointly supported by the National Natural Science Foundation of China (61305016) and Fundamental Research Funds for the Central Universities (GrantNo.JUSRP1059). We thank the anonymous editor and reviewers for their careful reading and many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Luo, X., Ding, L. et al. Robust visual tracking via a hybrid correlation filter. Multimed Tools Appl 78, 31633–31648 (2019). https://doi.org/10.1007/s11042-019-07851-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07851-3

Keywords

Navigation