A survey on content awareness challenges in IPTV delivery networks


Nowadays, with the evolution of digital video broadcasting, as well as, the advent of high speed broadband networks, a new era of TV services has emerged known as IPTV. IPTV is a system that exploits the high speed broadband networks to deliver TV services to the subscribers. From the service provider viewpoint, the challenge in IPTV systems is how to build delivery networks that exploits the resources efficiently and reduces the service cost, as well. However, designing such delivery networks are affected by many factors including choosing the suitable network architecture, load balancing, resources waste, and cost reduction. Furthermore, IPTV contents characteristics; particularly size, popularity, and interactivity play an important role in balancing the load and avoiding the resources waste for delivery networks. Ignoring the content status in solving delivery networks issues particularly replica placement, request distribution, and resource allocation problems leads to load imbalance, which in turn, leads to performance degradation in IPTV system. In this survey paper, we introduce IPTV delivery networks terminology and taxonomy. Upon that, we investigate the challenges related to the contents’ awareness in those delivery networks. At the end of the paper, we propose a content-awareness in ITV delivery networks and CDN as the future direction and discuss its importance in different aspects as request redirection, resource allocation, and replica placement.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Aldana Diaz ME, Huh EN (2011) Cost analysis on IPTV hosting service for 3rd party providers. Proc 5th Int Conf Ubiquitous Inform Manag Commun. ACM: 114

  2. 2.

    Alemany J, Thathachar JS (1997) Random striping news on demand servers. Dept. of Computer Science & Engineering, University of Washington, Technical report -TR-97-02-02

  3. 3.

    Almeida JM (2003) Streaming content distribution networks with minimum delivery cost. Doctoral dissertation. University of Wisconsin

  4. 4.

    Belbekkouche A, Hasan M, Karmouch A (2012) Resource discovery and allocation in network virtualization. Commun Surveys Tutor IEEE 14(4):1114–1128

    Article  Google Scholar 

  5. 5.

    Bikfalvi A, García-Reinoso J, Vidal I, Valera F, Azcorra A (2011) P2P vs. IP multicast: comparing approaches to IPTV streaming based on TV channel popularity. Comput Netw 5(6):1310–1325. https://doi.org/10.1016/j.comnet.2010.12.020.

    Article  Google Scholar 

  6. 6.

    Bisdikian CC, Patel BV (1996) Cost-based program allocation for distributed multimedia-on-demand systems. IEEE Multimed 3(3):62–72

    Article  Google Scholar 

  7. 7.

    Bolosky WJ, Barrera JS, Draves RP, Fitzgerald RP, Gibson GA, Jones MB, Levi SP, Myhrvold NP, Rashid RF (1996) The Tiger Video Fileserver. Technical Report (MSR-TR-96-09), Microsoft Research

  8. 8.

    Borzemski L, Zatwarnicki K (2008) CDNs with global adaptive request distribution. In Knowledge-Based Intelligent Information and Engineering Systems, 12th International Conference (KES’08), Zagreb, Croatia, September 3–5, 2008, Proceedings Part II (pp. 117–124). (Lecture Notes in Computer Science; Vol. 5178). Springer Berlin Heidelberg

  9. 9.

    Cardellini V, Colajanni M, Philip SY (1999) Dynamic load balancing on web-server systems. Internet Comput IEEE 3(3):28–39

    Article  Google Scholar 

  10. 10.

    Casalicchio E, Cardellini V, Colajanni M (2002) Content-aware dispatching algorithms for cluster-based web servers. Clust Comput 5(1):65–74

    Article  Google Scholar 

  11. 11.

    Cherkasova L, Ponnekanti SR (2000) Optimizing a “content-aware” load balancing strategy for shared Web hosting service. Modeling, Anal Simul Comput Telecomm Syst 2000. Proc 8th Int Sym. IEEE: 492–499

  12. 12.

    Cho DH, Lee KY, Choi SL, Chung YD, Kim MH, Lee YJ (2008) A request distribution method for clustered VOD servers considering buffer sharing effects. J Syst Archit 54(1):335–346

    Article  Google Scholar 

  13. 13.

    Choe YR, Schuff DL, Dyaberi JM, Pai VS (2007) Improving VoD server efficiency with bittorrent. Proc 15th Int Conf Multimed (Multimedia’07) (pp. 117–126). ACM, New York, NY, USA

  14. 14.

    Cidon I, Kutten S, Soffer R (2002) Optimal allocation of electronic content. Comput Netw 40(2):205–218

    Article  Google Scholar 

  15. 15.

    Cranor CD, Ethington R, Sehgal A, Shur D, Sreenan C, van der Merwe JE (2003) Design and implementation of a distributed content management system. Proc 13th Int Workshop Netw Opera Syst Support Digit Audio Video (NOSSDAV '03). ACM, New York, NY, USA: 4–11

  16. 16.

    Dakshayini M, Guruprasad HS, Maheshappa HD, Manjunath AS (2007) Load balancing in distributed VoD using Local Proxy Server Group [LPSG]. Proc Int Conf Comput Intell Multimed Appl 2007 (ICCIMA’ IEEE-07) 4:162–168 IEEE, Sivakasi, Tamilnadu, India

    Google Scholar 

  17. 17.

    Davies C, Delany J (2005) IPTV VOD market analysis, technical report, Ovum

  18. 18.

    Dees E (2007) Decentralized advertisement recommendation on IPTV, Master thesis, Vrije University, Netherlands

  19. 19.

    Little, T. and Venkatesh, D. (1993) Probabilistic assignment of movies to storage devices in a video-on-demand system. network and operating system support for digital audio and video (846), Doug S., Blair G. S., Coulson G., Davies N., Garcia F. (Eds.). Lecture notes in computer science, London, UK: Springer-Verlag, pp. 204–215.

  20. 20.

    Du Z, Hu J, Chen Y, Cheng Z, Wang X (2011) Optimized qos-aware replica placement heuristics and applications in astronomy data grid. J Syst Softw 84(7):1224–1232

    Article  Google Scholar 

  21. 21.

    Dukes J, Jones J (2004) Using dynamic replication to manage service availability in a multimedia server cluster. Interactive Multimedia and Next Generation Networks (pp. 194-205). Springer Berlin Heidelberg

  22. 22.

    Ebara H, Yasutomo ABE, Ikeda D, Tsutsui T, Sakai K, Nakaniwa A, Okada H (2005) A cost-effective dynamic content migration method in CDNs. IEICE Trans Commun 88(12):4598–4604

    Article  Google Scholar 

  23. 23.

    EBU (2011) The future of terrestrial broadcasting. Technical report. European Broadcasting Union, Switzerland

    Google Scholar 

  24. 24.

    Fan Q, Yin H, Min G, Yang P, Luo Y, Lyu Y et al (2018) Video delivery networks: challenges, solutions and future directions. Comput Electr Eng 66:332–341

    Article  Google Scholar 

  25. 25.

    Fati SM, Sumari P (2018) Content awareness in IPTV delivery networks. IPTV Deliv Netw: Next Gen Arch Live Video-on-Demand Serv: 93

  26. 26.

    Fati SM, Sumari P (2018) IPTV: Delivering TV services over IP networks. IPTV delivery networks: Next Generation Architectures for Live and Video-on-Demand Services, 3

  27. 27.

    Fati SM, Budiartu R, Sumari P (2014). Provisioning virtual IPTV delivery networks using hybrid genetic algorithm. Proc 8th Int Conf Ubiquitous Inform Manag Commun. ACM: 106

  28. 28.

    Fati SM, Sumari P, Yuhaniz SS, Sjarif NNBA (2017) Modelling contents status for IPTV delivery networks. Proceedings of the 6th International Conference of Computing & Informatics (pp. 282–290). Sintok: School of Computing

  29. 29.

    Figueiredo F, Benevenuto F, Almeida JM (2011) The tube over time: characterizing popularity growth of youtube videos. Proc Fourth ACM Int Conf Web Search Data Mining. ACM: 745–754

  30. 30.

    Fleury J (2006) IPTV related standardization activities in DVB, ITU-T IPTV global technical workshop, Seoul, Korea

  31. 31.

    Gaber SMA, Sumari P (2012) Predictive and content-aware load balancing algorithm for peer-service area based IPTV networks. Multimed Tools Appl: 1–24

  32. 32.

    Gaber SMA, Sumari P, Budiarto R (2012) Balanced content allocation scheme for peer-service area CDN architecture for IPTV services. J ICT 11:131–146

    Google Scholar 

  33. 33.

    Gafsi J, Biersack EW (2000) Modelling and performance comparison of reliability strategies for distributed video servers. Trans Parallel Distrib Syst IEEE 11(4):412–430

    Article  Google Scholar 

  34. 34.

    Ganger GR, Worthington BL, Hou RY, Patt YN (1993) Disk subsystem load balancing: disk striping vs. conventional data placement. Proc Twenty-Sixth Hawaii Int Conf Syst Sci 1993 1:40–49 IEEE Computer Society, Maui, Hawaii

    Article  Google Scholar 

  35. 35.

    García R, Pañeda XG, Melendi D, Garcia V (2009) Probabilistic analysis and interdependence discovery in the user interactions of video news on demand service. Comput Netw 53(12):2038–2049

    MATH  Article  Google Scholar 

  36. 36.

    GlobeComm (2006) The IPTV Revolution: New Opportunities, New Challenges for Satellite Communications Systems, www.globecommsystems.com

  37. 37.

    Golubchik L, Muntz RR, Chou CF, Berson S (2001) Design of fault-tolerant large-scale VOD servers: with emphasis on high-performance and low-cost. Trans Parallel Distrib Syst IEEE 12(4):363–386

    Article  Google Scholar 

  38. 38.

    Guo J, Wang Y, Tang KS, Chan S, Wong EW, Taylor P, Zukerman M (2008) Evolutionary optimization of file assignment for a large-scale video-on-demand system. Knowl Data Eng IEEE Trans 20(6):836–850

    Article  Google Scholar 

  39. 39.

    Guruprasad HS, Maheshappa HD (2008) Dynamic load balancing architecture for distributed VoD using agent technology. Int J Comput Sci Sec (IJCSS) 2(5):14–20

    Google Scholar 

  40. 40.

    Hei X, Liang C, Liang J, Liu Y, Ross KW (2007) A measurement study of a large-scale P2P IPTV system. IEEE Trans Multimed 9(8):1672–1687

    Article  Google Scholar 

  41. 41.

    Hongliang Y, Dongdong Z, Ben YZ, Weimin Z (2006) Understanding user behavior in large-scale video-on-demand systems, Proc of the 1st ACM SIGOPS/ EuroSys: 333–344

  42. 42.

    Houidi I, Louati W, Ben Ameur W, Zeghlache D (2011) Virtual network provisioning across multiple substrate networks. Comput Netw 55(4):1011–1023

    MATH  Article  Google Scholar 

  43. 43.

    Huang YF, Fang CC (2004) Load balancing for clusters of VOD servers. Inf Sci 164(1):113–138

    MATH  Article  Google Scholar 

  44. 44.

    Huang C, Li J, Ross KW (2007) Can internet video-on-demand be profitable? ACM SIGCOMM Comput Commun Rev 37(4):133–144

    Article  Google Scholar 

  45. 45.

    ITU-T Focus Group IPTV, I. P. T. V (2006) Service requirements. Retrieved from http://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-IPTV-2008-1-PDF-E.pdf

  46. 46.

    Jacqui C (2007) Report: One-third of TV watching to be video-on-demand by 2012, Report, ars technica, http://arstechnica.com/uncategorized/2007/09/report-one-third-of-tv-watching-to-be-video-on-demand-by-2012/

  47. 47.

    Joe I, Yi JH, Sohn KS (2012) A content-based caching algorithm for streaming media cache servers in CDN. In proceeding of: Multimedia, Computer Graphics and Broadcasting -International Conference, MulGraB 2011, Held as Part of the Future Generation Information Technology Conference, FGIT 2011, in Conjunction with GDC 2011, Jeju Island, Korea, December 8-10, 2011. Proceedings, Part I (pp. 28-36). Springer Berlin Heidelberg

  48. 48.

    Karantanis S (2009) IPTV evolution - Strategic issues for an IPTV provider in Greece, Master thesis, Athens Information Technology, Greece

  49. 49.

    Karlsson M, Karamanolis C, Mahalingam M (2002) A framework for evaluating replica placement algorithms, technical report HPL-2002, HP Laboratories

  50. 50.

    Khan SU, Ahmad I (2008) Comparison and analysis of ten static heuristics-based internet data replication techniques. J Parallel Distrib Comput 68(2):113–136

    MATH  Article  Google Scholar 

  51. 51.

    Kim CS, Bak YH, Woo SM, Lee WJ, Min OG, Kim HY (2006) Design and implementation of a storage management method for content distribution. Proc 8th Int Conf Adv Commun Technol (ICACT’06) 2:5 IEEE, Phoenix Park, Korea

    Google Scholar 

  52. 52.

    Kitjongthawonkul, S., & Ko, J. (2011) Using an effective algorithm to resolve the video-on-demand service network resource allocation problem. Adv Commun Technol (ICACT), 2011 13th Int Conf. IEEE: 1031–1036

  53. 53.

    Kulatunga C, Kandavanam G, Rana AI, Balasubramaniam S, Botvich D (2011) HySAC: a hybrid delivery system with adaptive content management for IPTV networks. Proc Int Conf Commun (ICC’11). IEEE, Kyoto, Japan: 1–5

  54. 54.

    Laoutaris N, Zissimopoulos V, Stavrakakis I (2005) On the optimization of storage capacity allocation for content distribution. Comput Netw 47(3):409–428

    Article  Google Scholar 

  55. 55.

    Lee JYB, Wong PC (2000) Performance analysis of a pull-based parallel video server. IEEE Trans Parallel Distrib Syst 11(12):1217–1231

    Article  Google Scholar 

  56. 56.

    Lee SB, Muntean G, Smeaton AF (2009) Performance-aware replication of distributed pre-recorded IPTV content. Broadcast IEEE Trans 55(2):516–526

    Article  Google Scholar 

  57. 57.

    Lee GM, Raj Bhandari S, Crespi N (2010) Content delivery for personalized IPTV services using peer to peer proxy. J Internet Eng 4(1)

  58. 58.

    Li M, Wu CH (2010) A cost-effective resource allocation and management scheme for content networks supporting IPTV services. Comput Commun 33(1):83–91

    Article  Google Scholar 

  59. 59.

    Loukopoulos T, Ahmad I (2004) Static and adaptive distributed data replication using genetic algorithms. J Parallel Distrib Comput 64(11):1270–1285

    MATH  Article  Google Scholar 

  60. 60.

    Mahmood A (2010) Replicating web contents using a hybrid particle swarm ptimization. Inf Process Manag 46(2):170–179

    Article  Google Scholar 

  61. 61.

    Meng S, Liu L, Yin J (2010) Scalable and reliable IPTV service through collaborative request dispatching. Web Services (ICWS), 2010 IEEE Int Conf. IEEE, 179–186

  62. 62.

    Mikoczy E, Pavol P (2009) Evolution of IPTV Architecture and Services towards NGN. In: Recent Advances in Multimedia Signal Processing and Communications (231), Grgic, M. , Delac, K., Ghanbari, M. (Eds.) ,Studies in Computational Intelligence, Springer Berlin / Heidelberg, pp. 315–339

  63. 63.

    Mir N (2011) Analysis of Reliable and Scalable Video-On-Demand Networks. In Proceeding of the 10th International Conference on Networks (ICN’11,) (pp. 430–435), St. Maarten, Netherland Antilles

  64. 64.

    Moon J, Moon HJ, Cho Y (2010) A history-based scheduler for dynamic load balancing on distributed VOD server environments. In Computational Science and Its Applications,the International Conference (ICCS’10, Fukuoka, Japan, March 23–26, 2010. Proceeding Part III (pp. 269–276). (Lecture Notes in Computer Science; Vol. 6018). Springer Berlin Heidelberg

  65. 65.

    MRG (2012) IPTV market leader report. Technical report. Multimedia research group, Inc. Retrieved from: http://www.mrgco.com/reports/iptv-market-leader-report-2013

  66. 66.

    Nair TR, Jayarekha P (2010) A rank based replacement policy for multimedia server cache using Zipf-like law. J Comput 2(3):14–22

    Google Scholar 

  67. 67.

    Nakaniwa A, Ebara H (2007) Optimal allocation of cache servers and content files in content distribution networks. Proceedings of IASTED European conference on internet and multimedia systems and applications (IMSA'07) (pp. 15–22). ACTA press Anaheim, CA, USA

  68. 68.

    Neves TA, Drummond L, Ochi LS, Albuquerque C, Uchoa E (2010) Solving replica placement and request distribution in content distribution networks. Electron Notes Discrete Math 36:89–96

    MATH  Article  Google Scholar 

  69. 69.

    Nguyen T, Safaei F, Boustead P, Tung Chou C (2005) Provisioning overlay distribution networks. Comput Netw 49(1):103–118

    MATH  Article  Google Scholar 

  70. 70.

    Nishimura H, Iwasa E, Irie M, Kondoh S, Kaneko M, Fukumoto T, ..., Ueda K (2012) Applying flexibility in scale-out-based web cloud to future telecommunication session control systems. Proc 16th Int Conf Intell Next Gen Netw (ICIN’12). IEEE, Berlin, Germany: 1–7

  71. 71.

    Niu D (2013) Demand forecast, resource allocation and pricing for multimedia delivery from the cloud. Doctoral dissertation. University of Toronto. Canada

  72. 72.

    Nordström E (2009) Overview of IPTV systems .Technical report. Retrieved from: http://www.bizopt.se/resources/reports/iptv-system.pdf

  73. 73.

    Open IPTV Forum (2009a) Functional architecture, technical report, APPROVED Jan 15, 2008, http://www.openiptvforum.org

  74. 74.

    Open IPTV Forum (2009b) Service and platform requirements, technical report. V 1.1,2008-05-07 Final, http://www.openiptvforum.org

  75. 75.

    Organization for Economics Development (OECD) (2007) Convergence and next generation networks. DSTI/ICCP/CISP(2007)2/FINAL, http://www.oecd.org/dataoecd/25/11/40761101.pdf

  76. 76.

    Pai VS, Aron M, Banga G, Svendsen M, Druschel P, Zwaenepoel W, Nahum E (1998) Locality-aware request distribution in cluster-based network servers. ACM Sigplan Notices ACM 33(11):205–216

    Article  Google Scholar 

  77. 77.

    Pandey S, Won YJ, Hong JW, Strassner J (2011) Dimensioning internet protocol television video on demand services. Int J Netw Manag 21(6):455–468

    Article  Google Scholar 

  78. 78.

    Passarella A (2012) A survey on content-centric technologies for the current internet: CDN and P2P solutions. Comput Commun 35(1):1–32

    Article  Google Scholar 

  79. 79.

    Pathan AMK, Buyya R (2007) A taxonomy and survey of content delivery networks. Grid computing and distributed systems laboratory. Technical report. University of Melbourne

  80. 80.

    Pathan M, Buyya R (2009) Architecture and performance models for QoS-driven effective peering of content delivery networks. Multiagent Grid Syst 5(2):165–195

    MATH  Article  Google Scholar 

  81. 81.

    Pathan M, Buyya R, Vakali A (2008) Content delivery networks: state of the art, insights, and imperatives. In Content Delivery Networks (pp. 3-32). (Lecture Notes Electrical Engineering vol. 9). Springer Berlin Heidelberg

  82. 82.

    Peter, W. K., Lie, Lui, J. C. S., Golubchik, L. (2000) Threshold-based dynamic replication in large-ScaleVideo-on-demand systems, Multimed Tools Appl 11(1): 35–62

  83. 83.

    Plagemann T, Goebel V, Mauthe A, Mathy L, Turletti T, Urvoy-Keller G (2006) From content distribution networks to content networks—issues and challenges. Comput Commun 29(5):551–562

    Article  Google Scholar 

  84. 84.

    Sabella R (2007) Network Architecture Evolution: towards "All-IP", the 3rd EuroNGI Conference on Next Generation Internet Networks, Trondheim, Norway, pp. xviii – xix

  85. 85.

    Scheuermann P, Weikum G, Zabback P (1998) Data partitioning and load balancing in parallel disk systems. VLDB J 7(1):48–66

    Article  Google Scholar 

  86. 86.

    Sharifian S, Motamedi SA, Akbari MK (2008) A content-based load balancing algorithm with admission control for cluster web servers. Futur Gener Comput Syst 24(8):775–787

    Article  Google Scholar 

  87. 87.

    Sharifian S, Motamedi SA, Akbari MK (2011) A predictive and probabilistic load-balancing algorithm for cluster-based web servers. Appl Soft Comput 11(1):970–981

    Article  Google Scholar 

  88. 88.

    Sierra-LLamazares KG (2009) An adaptive admission control and load balancing algorithm for a QoS-aware web system. Doctoral dissertation, Universitat de les Illes Balears, Spain

  89. 89.

    Sobe, A., Elmenreich, W., Böszörmenyi, L. (2010) Towards a self-organizing replication model for non-sequential media access, the 2010 ACM workshop on social, adaptive and personalized multimedia interaction and access (SAPMIA '10), New York, NY, USA: 3–8

  90. 90.

    Sujatha DN, Girish K, Venugopal KR, Patnaik LM (2008) In: Shrisha R, Mainak C, Prasad J, Murthy C, Saha S (eds) An1031–1036 efficient storage mechanism to distribute disk load in a VoD server, the 9th international conference on distributed computing and networking (ICDCN'08). Springer-Verlag, Berlin, Heidelberg, pp 478–483

    Google Scholar 

  91. 91.

    Takayanagi K (2003) The Dawn of TV broadcasting in Japan, broadcast technology magazine 14, Japan

  92. 92.

    Tang KS, Ko KT, Chan S, Wong EW (2001) Optimal file placement in VOD system using genetic algorithm. Indust Electron IEEE Trans 48(5):891–897

    Article  Google Scholar 

  93. 93.

    Tay YC, Pang H (2000) Load sharing in distributed multimedia-on-demand systems. Trans Know Data Eng IEEE 12(3):410–428

    Article  Google Scholar 

  94. 94.

    Tenzakhti F, Day K, Ould-Khaoua M (2004) Replication algorithms for the world-wide web. J Syst Archit 50(10):591–605

    Article  Google Scholar 

  95. 95.

    Teo YM, Ayani R (2001) Comparison of load balancing strategies on cluster-based web servers. Int J Soc Model Simul 77(5–6):185–195

    Google Scholar 

  96. 96.

    Thouin F (2007) Video-on-demand equipment allocation, master thesis, McGill University Montreal

  97. 97.

    Thouin F, Coates M (2007) Video-on-demand networks: design approaches and future challenges. Network IEEE 21(2):42–48

    Article  Google Scholar 

  98. 98.

    Valentin R (2004) Digital TV broadcasting handbook, ABE Elettronica S.p.A

  99. 99.

    Vicari C (2008) Distributed dynamic replica placement and request redirection in content delivery networks. Doctoral Dissertation. Università degli Studi di Roma, Italy

  100. 100.

    Vinay A, Prakash A, Kumar DS, Nagabhushan K, Anitha TN (2011) A novel and optimal video replication technique for video-on-demand systems. Proc Int Conf Workshop Emerg Trends Technol (ICWET 2011). ACM, Mumbai, Maharashtra, India: 344–350

  101. 101.

    Wah BW (1984) File placement on distributed computer systems. IEEE Comput 17(1):23–32

    Article  Google Scholar 

  102. 102.

    Wang Y, Du D (1997) Weighted striping in multimedia servers, the international conference on multimedia computing and systems (ICMCS '97). IEEE Comput Soc, Washington, DC, USA: 102–119

  103. 103.

    Wang JZ, Guha R (2001) Efficiently allocating video data in distributed multimedia applications. J Appl Syst Stud: Methodol Appl Syst Approach 3(2):1–15

    Google Scholar 

  104. 104.

    Wauters T, Coppens J, De Turck F, Dhoedt B, Demeester P (2006) Replica placement in ring based content delivery networks. Comput Commun 29(16):3313–3326

    Article  Google Scholar 

  105. 105.

    Wolf J (1989) The placement optimization program: a practical solution to the disk file assignment problem. Perform Eval Rev ACM 17(1):1–10

    MathSciNet  Article  Google Scholar 

  106. 106.

    Xu S (2009) Replica placement algorithms for efficient internet content delivery. Doctoral dissertation, University of Adelaide. Australia

  107. 107.

    Yarali A, Cherry A. (2005) Internet protocol television (IPTV). Proc Ann Tech Conf IEEE (IEEE TENCON 2005). IEEE, Melbourne, Australia, 1–6

  108. 108.

    Zaman S, Grosu D (2011) A distributed algorithm for the replica placement problem. Parallel Distrib Syst IEEE Trans 22(9):1455–1468

    Article  Google Scholar 

  109. 109.

    Zhou X, Xu C (2002) Request redirection and data layout for network traffic balancing in cluster-based video-on-demand servers. Proc Int Conf IPDPS: 127–134

  110. 110.

    Zhou X, Xu CZ (2007) Efficient algorithms of video replication and placement on a cluster of streaming servers. J Netw Comput Appl 30(2):515–540

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Suliman Mohamed Fati.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fati, S.M., Sumari, P. A survey on content awareness challenges in IPTV delivery networks. Multimed Tools Appl 78, 16817–16842 (2019). https://doi.org/10.1007/s11042-018-7057-3

Download citation


  • IPTV
  • Delivery networks
  • Replica placement
  • Content status
  • Load balancing
  • IPTV delivery networks