Skip to main content
Log in

Multi-orientation geometric medical volumes segmentation using 3D multiresolution analysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Medical images have a very significant impact in the diagnosing and treating process of patient ailments and radiology applications. For many reasons, processing medical images can greatly improve the quality of radiologists’ job. While 2D models have been in use for medical applications for decades, wide-spread utilization of 3D models appeared only in recent years. The proposed work in this paper aims to segment medical volumes under various conditions and in different axel representations. In this paper, we propose an algorithm for segmenting Medical Volumes based on Multiresolution Analysis. Different 3D volume reconstructed versions have been considered to come up with a robust and accurate segmentation results. The proposed algorithm is validated using real medical and Phantom Data. Processing time, segmentation accuracy of predefined data sets and radiologist’s opinions were the key factors for methods validations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Trans Med Imaging 21(3):193–199. https://doi.org/10.1109/42.996338

    Article  Google Scholar 

  2. Al-Ayyoub M, Abu-Dalo AM, Jararweh Y, Jarrah M, Al Sa’d M (2015) A gpu-based implementations of the fuzzy c-means algorithms for medical image segmentation. J Supercomput 71(8):3149–3162

    Article  Google Scholar 

  3. Al-Ayyoub M, AlZu’bi S, Jararweh Y, Shehab MA, Gupta BB (2018) Accelerating 3d medical volume segmentation using gpus. Multimedia Tools and Applications 77(4):4939–4958. https://doi.org/10.1007/s11042-016-4218-0

    Article  Google Scholar 

  4. Al-Zu’bi S, Al-Ayyoub M, Jararweh Y, Shehab MA (2017) Enhanced 3d segmentation techniques for reconstructed 3d medical volumes: robust and accurate intelligent system. Procedia Computer Science 113:531–538. https://doi.org/10.1016/j.procs.2017.08.318. http://www.sciencedirect.com/science/article/pii/S1877050917317283, the 8th international conference on emerging ubiquitous systems and pervasive networks (EUSPN 2017)

    Article  Google Scholar 

  5. AlZu’bi S, Amira A (2010) 3d medical volume segmentation using hybrid multiresolution statistical approaches. Adv Artificial Intellegence 2010:520,427:1–520,427:15

    Google Scholar 

  6. AlZubi S, Sharif MS, Abbod M (2011a) Efficient implementation and evaluation of wavelet packet for 3d medical image segmentation. In: 2011 IEEE international symposium on medical measurements and applications., pp 619–622 https://doi.org/10.1109/MeMeA.2011.5966667

  7. AlZubi S, Sharif MS, Islam N, Abbod M (2011b) Multi-resolution analysis using curvelet and wavelet transforms for medical imaging. In: 2011 IEEE international symposium on medical measurements and applications, pp 188–191. https://doi.org/10.1109/MeMeA.2011.5966687

  8. AlZubi S, Jararweh Y, Shatnawi R (2012) Medical volume segmentation using 3d multiresolution analysis. In: 2012 international conference on innovations in information technology (IIT), pp 156–159

  9. AlZu’bi S, Shehab M, Al-Ayyoub M, Jararweh Y, Gupta B (2018a) Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.07.026. http://www.sciencedirect.com/science/article/pii/S016786551830326X

  10. AlZu’bi SM (2011) A 3d multiresolution statistical approaches for accelerated medical image and volume segmentation. PhD thesis, School of Engineering and Design, Brunel University - London

  11. Badura P (2017) Virtual bacterium colony in 3d image segmentation. Comput Med Imaging Graph https://doi.org/10.1016/j.compmedimag.2017.04.004

  12. Berg JV, Kruecker J, Schulz H, Meetz K, Sabczynski J (2004) A hybrid method for registration of interventional ct and ultrasound images. Int Congr Ser 1268:492–497. https://doi.org/10.1016/j.ics.2004.03.171

    Article  Google Scholar 

  13. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, Norwell

    Book  MATH  Google Scholar 

  14. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F (2013) Maintaining and operating a public information repository. J Digit Imaging 23(6):1045–1057

    Article  Google Scholar 

  15. Computerized Imaging Reference Systems I (2013) Triple modality 3D abdominal phantom, Model 057A. CIRS

  16. Cook S (2012) CUDA programming: a developer’s guide to parallel computing with GPUs. Applications of GPU Computing Series, Elsevier Science

  17. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4):198–211. https://doi.org/10.1016/j.compmedimag.2007.02.002. Computer-aided Diagnosis (CAD) and Image-guided Decision Support

    Article  Google Scholar 

  18. Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. SIGGRAPH Comput Graph 22(4):65–74. https://doi.org/10.1145/378456.378484

    Article  Google Scholar 

  19. Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57. https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  20. Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the gpu – past, present and future. Med Image Anal 17(8):1073–1094. https://doi.org/10.1016/j.media.2013.05.008

    Article  Google Scholar 

  21. El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through mri: a survey and a new algorithm. Expert Syst Appl 41(11):5526–5545. https://doi.org/10.1016/j.eswa.2014.01.021

    Article  Google Scholar 

  22. Engel K, Kraus M, Ertl T (2001) High-quality pre-integrated volume rendering using hardware-accelerated pixel shading. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware, ACM, New York, NY, USA, HWWS ’01, pp 9–16 https://doi.org/10.1145/383507.383515

  23. Eschrich S, Ke J, Hall LO, Goldgof DB (2003) Fast accurate fuzzy clustering through data reduction. IEEE Trans Fuzzy Syst 11(2):262–270. https://doi.org/10.1109/TFUZZ.2003.809902

    Article  Google Scholar 

  24. Figueiredo O (1999) Advances in discrete geometry applied to the extraction of planes and surfaces from 3d volumes. PhD thesis, Ecole Polytechnique Fédérale de Lausanne

  25. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT (2006) Volume rendering versus maximum intensity projection in ct angiography: what works best, when, and why. Radiographics : a review publication of the Radiological Society of North America, Inc 26(3):905–22

    Article  Google Scholar 

  26. Fulkerson B, Soatto S (2012) Really quick shift: image segmentation on a gpu. In: Trends and topics in computer vision, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 350–358

  27. Gletsos M, Mougiakakou SG, Matsopoulos GK, Nikita KS, Nikita AS, Kelekis D (2003) A computer-aided diagnostic system to characterize ct focal liver lesions: design and optimization of a neural network classifier. IEEE Trans Inf Technol Biomed 7(3):153–162. https://doi.org/10.1109/TITB.2003.813793

    Article  Google Scholar 

  28. Gonzalez RC, Woods RE (2006) Digital image processing, 3rd. Prentice-Hall, Inc., Upper Saddle River, NJ, USA

    Google Scholar 

  29. Haralick RM, Shapiro LG (1985) Image segmentation techniques. Computer Vision Graphics, and Image Processing 29 (1):100–132. https://doi.org/10.1016/S0734-189X(85)90153-7

    Article  Google Scholar 

  30. Hwang C, Rhee FCH (2007) Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means. IEEE Trans Fuzzy Syst 15(1):107–120. https://doi.org/10.1109/TFUZZ.2006.889763

    Article  Google Scholar 

  31. (IEC) IEC, (NEMA) NEMA (2001) Nema standards publication no. nu2. National Electrical Manufacturers Association (NEMA) http://jrtassociates.com/pdfs/Pro-NM/20NEMA/20NU2.pdf

  32. Jayashree K, Sandy N (2015) Multi-site collection of lung ct data with nodule segmentations. J Digit Imaging. https://doi.org/10.7937/K9/TCIA.2015.1BUVFJR7, Binsheng Z

  33. Kostrzewa M, Rathmann N, Kara K, Schoenberg SO, Diehl SJ (2015) Accuracy of percutaneous soft-tissue interventions using a multi-axis, c-arm ct system and 3d laser guidance. Eur J Radiol 84(10):1970–1975. https://doi.org/10.1016/j.ejrad.2015.06.028

    Article  Google Scholar 

  34. Lacroute P, Levoy M (1994) Fast volume rendering using a shear-warp factorization of the viewing transformation. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, ACM, New York, NY, USA, SIGGRAPH ’94, pp 451–458. https://doi.org/10.1145/192161.192283

  35. Lee RK, Ihm I (2000) On enhancing the speed of splatting using both object- and image-space coherence. Graph Model 62(4):263–282. https://doi.org/10.1006/gmod.2000.0524

    Article  Google Scholar 

  36. Levoy M (1988) Display of surfaces from volume data. IEEE Comput Graph Appl 8(3):29–37. https://doi.org/10.1109/38.511

    Article  Google Scholar 

  37. Li J, Wu Y, Zhao J, Lu K (2016a) Multi-manifold sparse graph embedding for multi-modal image classification. Neurocomputing 173:501–510

    Article  Google Scholar 

  38. Li J, Zhao J, Lu K (2016b) Joint feature selection and structure preservation for domain adaptation. In: IjCAI, pp 1697–1703

  39. Li J, Wu Y, Zhao J, Lu K (2017a) Low-rank discriminant embedding for multiview learning. IEEE Transactions on Cybernetics 47(11):3516–3529

    Article  Google Scholar 

  40. Li J, Lu K, Huang Z, Zhu L (2018) Transfer independently together: a generalized framework for domain adaptation. IEEE Transactions on Cybernetics

  41. Li Z, Nie F, Chang X, Yang Y (2017b) Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis. IEEE Trans Knowl Data Eng 29(10):2100–2110

    Article  Google Scholar 

  42. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  43. Lum EB, Wilson B, Ma KL (2004) High-quality lighting and efficient pre-integration for volume rendering. In: VISSYM’04

  44. Luo M, Chang X, Li Z, Nie L, Hauptmann AG, Zheng Q (2017) Simple to complex cross-modal learning to rank. Comput Vis Image Underst 163:67–77

    Article  Google Scholar 

  45. M Al-Ayyoub DAZ (2013) Determining the type of long bone fractures in x-ray images. WSEAS Trans Inf Sci Appl 10(8):261–270

    Google Scholar 

  46. Ma Z, Chang X, Yang Y, Sebe N, Hauptmann AG (2017) The many shades of negativity. IEEE Trans Multimedia 19(7):1558–1568

    Article  Google Scholar 

  47. Max N, Hanrahan P, Crawfis R (1990) Area and volume coherence for efficient visualization of 3d scalar functions. In: Computer Graphics, pp 27–33

  48. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108. https://doi.org/10.1016/S1361-8415(96)80007-7

    Article  Google Scholar 

  49. Montgomery D (2006) Multiscale compression and segmentation of volumetric oncological pet imagery. PhD thesis, The Queen’s University of Belfast

  50. Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. Graphical Models and Image Processing 60(5):349–384. https://doi.org/10.1006/gmip.1998.0480

    Article  MATH  Google Scholar 

  51. Nikolaidis D (2001) 3-D image processing algorithms. PhD thesis, The Queen’s University of Belfast

  52. Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences. Springer, New York

    MATH  Google Scholar 

  53. Pawel B, Kawa J, Czajkowska J, Rudzki M, Pietka E (2011) Fuzzy connectedness in segmentation of medical images, a look at the pros and cons. International Conference on Fuzzy Computation Theory and Applications 2011:486–492

    Google Scholar 

  54. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337. https://doi.org/10.1146/annurev.bioeng.2.1.315. pMID: 11701515

    Article  Google Scholar 

  55. Pietka E, Kawa J, Badura P, Spinczyk D (2010) Open architecture computer-aided diagnosis system. Expert Syst 27(1):17–39

    Article  Google Scholar 

  56. Shih F (2009) Image Processing and Mathematical Morphology: Fundamentals and Applications. CRC Press

  57. Silverstein JC, Parsad NM, Tsirline V (2008) Automatic perceptual color map generation for realistic volume visualization. J Biomed Inform 41(6):927–935. https://doi.org/10.1016/j.jbi.2008.02.008

    Article  Google Scholar 

  58. Stytz MR, Frieder G, Frieder O (1991) Three-dimensional medical imaging: algorithms and computer systems. ACM Comput Surv 23:421–499

    Article  Google Scholar 

  59. Udupa JK, Samarasekera S (1996) Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graphical Models and Image Processing 58(3):246–261. https://doi.org/10.1006/gmip.1996.0021

    Article  Google Scholar 

  60. Vázquez V, Eugenio M, Pedro G, Manlio FVC, Felipe n C, Eduardo AV, Claudio VS, Kirby GV, Manuel D, Javier P (2017) Assessment of intraoperative 3d imaging alternatives for ioert dose estimation. Zeitschrift fü,r Medizinische Physik 27(3):218–231. https://doi.org/10.1016/j.zemedi.2016.07.002

    Article  Google Scholar 

  61. Wiecawek W, Pitka E (2008) Fuzzy clustering in segmentation of abdominal structures based on ct studies. In: Pietka E, Kawa J (eds) Information technologies in biomedicine, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 93–104

  62. Wieclawek W, Pietka E (2007) Live-wire-based 3d segmentation method. In: 2007 29th annual international conference of the IEEE engineering in medicine and biology society, pp 5645–5648. https://doi.org/10.1109/IEMBS.2007.4353627

  63. Wieclawek W, Pietka E (2015) Watershed based intelligent scissors. Comput Med Imaging Graph 43:122–129. https://doi.org/10.1016/j.compmedimag.2015.01.003

    Article  Google Scholar 

  64. Won HJ, Kim N, Kim GB, Seo JB, Kim H (2017) Validation of a ct-guided intervention robot for biopsy and radiofrequency ablation: experimental study with an abdominal phantom. Diagn Interv Radiol 23:233–237

    Article  Google Scholar 

  65. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678. https://doi.org/10.1109/TNN.2005.845141

    Article  Google Scholar 

  66. Zarychta P, Konik H, Zarychta-bargieła A (2012) Computer assisted location of the lower limb mechanical axis. In: Information technologies in biomedicine, Springer Berlin, Heidelberg, Berlin, Heidelberg, pp 93–100

  67. Zhang Y, Matuszewski BJ, Shark LK, Moore CJ (2008) Medical image segmentation using new hybrid level-set method. In: 2008 fifth international conference biomedical visualization: information visualization in medical and biomedical informatics, pp 71–76. https://doi.org/10.1109/MediVis.2008.12

  68. Zhao B (2015) Data from lung phantom. The cancer imaging archive https://doi.org/10.7937/K9/TCIA.2015.08A1IXOO

  69. Zhu L, Shen J, Jin H, Xie L, Zheng R (2015a) Landmark classification with hierarchical multi-modal exemplar feature. IEEE Trans Multimedia 17(7):981–993

    Article  Google Scholar 

  70. Zhu L, Shen J, Jin H, Zheng R, Xie L (2015b) Content-based visual landmark search via multimodal hypergraph learning. IEEE Transactions on Cybernetics 45(12):2756–2769

    Article  Google Scholar 

  71. Zhu L, Huang Z, Liu X, He X, Sun J, Zhou X (2017a) Discrete multimodal hashing with canonical views for robust mobile landmark search. IEEE Transactions on Multimedia 19(9):2066–2079

    Article  Google Scholar 

  72. Zhu L, Shen J, Xie L, Cheng Z (2017b) Unsupervised topic hypergraph hashing for efficient mobile image retrieval. IEEE Transactions on Cybernetics 47(11):3941–3954

    Article  Google Scholar 

  73. Zhu L, Shen J, Xie L, Cheng Z (2017c) Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans Knowl Data Eng 29(2):472–486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi AlZu’bi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlZu’bi, S., Jararweh, Y., Al-Zoubi, H. et al. Multi-orientation geometric medical volumes segmentation using 3D multiresolution analysis. Multimed Tools Appl 78, 24223–24248 (2019). https://doi.org/10.1007/s11042-018-7003-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7003-4

Keywords

Navigation