Skip to main content

Advertisement

Log in

Physics-based keyframe selection for human motion summarization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Analysis of human motion is a field of research that attracts significant interest because of the wide range of associated application domains. Intangible Cultural Heritage (ICH), including the performing arts and in particular dance, is one of the domains where related research is especially useful and challenging. Effective keyframe selection from motion sequences can provide an abstract and compact representation of the semantic information encoded therein, contributing towards useful functionality, such as fast browsing, matching and indexing of ICH content. The availability of powerful 3D motion capture sensors along with the fact that video summarization techniques are not always applicable to the particular case of dance movement create the need for effective and efficient summarization techniques for keyframe selection from 3D human motion capture data sequences. In this paper, we introduce two techniques: a “time-independent” method based on k-means++ clustering algorithm for the extraction of prominent representative instances of a dance, and a physics-based technique that creates temporal summaries of the sequence at different levels of detail. The proposed methods are evaluated on two dance motion datasets and show promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. [Online]: VICON Motion Capture Systems (2017). http://www.vicon.com. Accessed 4 Dec 2018

  2. Arai K, Barakbah AR (2007) Hierarchical k-means: an algorithm for centroids initialization for k-means. Rep Fac Sci Engrg 36(1):25–31

    Google Scholar 

  3. Arikan, O. (2006). Compression of motion capture databases. In: ACM Transactions on Graphics (TOG) (Vol. 25, No. 3, p 890–897). ACM

    Article  MathSciNet  Google Scholar 

  4. Aristidou A, Charalambous P, Chrysanthou Y (2015) Emotion analysis and classification: Understanding the performers’ emotions using the lma entities. In: Computer Graphics Forum, vol. 34. Wiley Online Library, p 262–276

  5. Aristidou A, Stavrakis E, Charalambous P, Chrysanthou Y, Loizidou Himona S (2015) Folk dance evaluation using laban movement analysis. ACM JOCCH 8:20:1–20:19

    Google Scholar 

  6. Aristidou A, Stavrakis E, Papaefthimiou M, Papagiannakis G, Chrysanthou Y (2017) Style-based motion analysis for dance composition. Vis Comput. https://doi.org/10.1007/s00371-017-1452-z

    Article  Google Scholar 

  7. Aristidou A, Zeng Q, Stavrakis E, Yin K, Daniel C, Chrysanthou Y, Chen B (2017) Emotion control of unstructured dance movements. In: Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation, SCA ‘17, p 9:1–9:10. ACM, New York, NY, USA. https://doi.org/10.1145/3099564.3099566

  8. Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Pro- ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, p 1027–1035

  9. Assa J, Caspi Y, Cohen-Or D (2005) Action synopsis: pose selection and illustration. In: ACM Transactions on Graphics (TOG) (Vol. 24, No. 3, p 667–676). ACM

    Article  Google Scholar 

  10. Baraff, D. (1997) Physically based modeling: Principles and practice implicit methods for differential equations. In: SIGGRAPH, vol. 97, p E1–E4

  11. Barbič J, Safonova A, Pan JY, Faloutsos C, Hodgins JK, Pollard NS (2004) Segment- ing motion capture data into distinct behaviors. In: Proceedings of Graphics Interface 2004. Canadian Human-Computer Communications Society, p 185–194

  12. Bernard J, Wilhelm N, Krüger B, May T, Schreck T, Kohlhammer J (2013) Motionex- plorer: exploratory search in human motion capture data based on hierarchical aggre- gation. IEEE Trans Vis Comput Graph 19(12):2257–2266

    Article  Google Scholar 

  13. Bulut E, Capin T (2007) Key frame extraction from motion capture data by curve saliency. In Computer animation and social agents, p. 119

  14. Chai J, Hodgins JK (2005) Performance animation from low-dimensional control signals. In: ACM Transactions on Graphics (ToG), 24:686–696. ACM

    Article  Google Scholar 

  15. Chen C, Zhuang Y, Nie F, Yang Y, Wu F, Xiao J (2011) Learning a 3d human pose distance metric from geometric pose descriptor. IEEE Trans Vis Comput Graph 17(11):1676–1689. https://doi.org/10.1109/TVCG.2010.272

    Article  Google Scholar 

  16. Chen S, Sun Z, Zhang Y (2015) Scalable organization of collections of motion capture data via quantitative and qualitative analysis. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. ACM, p. 411–418

  17. Choi B, Lewis JP, Seol Y, Hong S, Eom H, Jung S, Noh J (2016) SketchiMo: sketch-based motion editing for articulated characters. ACM Trans Graph 35(4):146

    Article  Google Scholar 

  18. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  19. Doulamis ND, Voulodimos AS, Kosmopoulos DI, Varvarigou TA (2010) Enhanced human behavior recognition using hmm and evaluative rectification. In: Proceedings of the First ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, ARTEMIS ‘10. ACM, New York, p 39–44. https://doi.org/10.1145/1877868.1877880

  20. Doulamis A, Voulodimos A, Doulamis N, Soile S, Lampropoulos A (2017) Transform- ing intangible folkloric performing arts into tangible choreographic digital objects: the terpsichore approach. In: Proceedings of the 12th International Joint Confer- ence on Computer Vision, Imaging and Computer Graphics Theory and Applica- tions - Volume 5: CVICG4CULT. INSTICC, SciTePress, p 451–460. https://doi.org/10.5220/0006347304510460

  21. Elhamifar E, Sapiro G, Vidal R (2012) See all by looking at a few: Sparse modeling for finding representative objects. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, p 1600–1607. IEEE

  22. Field M, Stirling D, Pan Z, Ros M, Naghdy F (2015) Recognizing human motions through mixture modeling of inertial data. Pattern Recogn 48(8):2394–2406

    Article  Google Scholar 

  23. Forbes K, Fiume E (2005) An efficient search algorithm for motion data using weighted pca. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM, p 67–76

  24. Halit C, Capin T (2011) Multiscale motion saliency for keyframe extraction from motion capture sequences. Comput Anim Virtual Worlds 22(1):3–14

    Article  Google Scholar 

  25. Hisatomi K, Katayama M, Tomiyama K, Iwadate Y (2011) 3d archive system for tradi- tional performing arts. Int J Comput Vis 94(1):78–88

    Article  Google Scholar 

  26. Kapadia M, Chiang IK, Thomas T, Badler NI, Kider JT Jr et al. (2013) Efficient motion retrieval in large motion databases. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM, p 19–28

  27. Kitsikidis A, Dimitropoulos K, Douka S, Grammalidis N (2014) Dance analysis using multiple kinect sensors. In: Computer Vision Theory and Applications (VISAPP), 2014 International Conference on, vol. 2. IEEE, p 789–795

  28. Kovar L, Gleicher M (2004) Automated extraction and parameterization of motions in large data sets. In: ACM Transactions on Graphics (ToG), vol. 23. ACM, p. 559–568

  29. Krüger B, Tautges J, Weber A, Zinke A (2010) Fast local and global similarity searches in large motion capture databases. In: Proceedings of the 2010 ACM SIG- GRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, p 1–10

  30. Laganière R, Bacco R, Hocevar A, Lambert P, Païs G, Ionescu BE (2008) Video summarization from spatio-temporal features. In: Proceedings of the 2Nd ACM TRECVid Video Summarization Workshop, TVS ‘08. ACM, New York, p 144–148. https://doi.org/10.1145/1463563.1463590

  31. Liu F, Zhuang Y, Wu F, Pan Y (2003) 3d motion retrieval with motion index tree. Comput Vis Image Underst 92(2–3):265–284

    Article  Google Scholar 

  32. Liu XM, Hao AM, Zhao D (2013) Optimization-based key frame extraction for motion capture animation. Vis Comput 29(1):85–95

    Article  Google Scholar 

  33. Makantasis K, Doulamis A, Doulamis N, Ioannides M (2016) In the wild image retrieval and clustering for 3d cultural heritage landmarks reconstruction. Multimed Tools Appl 75(7):3593–3629

    Article  Google Scholar 

  34. Müller M, Röder T (2006) Motion templates for automatic classification and retrieval of motion capture data. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, p 137–146

  35. Müller M, Röder T, Clausen M (2005) Efficient content-based retrieval of motion capture data. In: ACM Transactions on Graphics (ToG), vol. 24. ACM, p 677–685

  36. Müller M, Baak A, Seidel HP (2009) Efficient and robust annotation of motion capture data. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Com- puter Animation. ACM, p 17–26

  37. Protopapadakis E, Voulodimos A, Doulamis A, Camarinopoulos S, Doulamis N, Miaoulis G (2018) Dance pose identification from motion capture data: a comparison of classifiers. Technologies 6(1):31

    Article  Google Scholar 

  38. Protopapadakis E, Voulodimos A, Doulamis N (2018) Multidimensional trajectory similarity estimation via spatial-temporal keyframe selection and signal correlation analysis. In: Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference, PETRA ‘18. ACM, New York, p 91–97. https://doi.org/10.1145/3197768.3201533

  39. Rallis I, Georgoulas I, Doulamis N, Voulodimos A, Terzopoulos P (2017) Extraction of key postures from 3d human motion data for choreography summarization. In: 2017 9th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), p 94–101. https://doi.org/10.1109/VS-GAMES.2017.8056576

  40. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  41. Sheppard R, Kamali M, Rivas R, Tamai M, Yang Z, Wu W, Nahrstedt K (2008) Advancing interactive collaborative mediums through tele-immersive dance (TED): A symbiotic creativity and design environment for art and computer science, p 579–588. https://doi.org/10.1145/1459359.1459437

  42. Vögele A, Krüger B, Klein R (2014) Efficient unsupervised temporal segmentation of human motion. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, p 167–176

  43. Voulodimos AS, Kosmopoulos DI, Doulamis ND, Varvarigou TA (2014) A top- down event-driven approach for concurrent activity recognition. Multimed Tools Appl 69(2):293–311. https://doi.org/10.1007/s11042-012-0993-4

    Article  Google Scholar 

  44. Wu T, Gurram P, Rao RM, Bajwa WU (2015) Hierarchical union-of-subspaces model for human activity summarization. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), p 1053–1061. https://doi.org/10.1109/ICCVW.2015.138

  45. Yang Y, Liu X (1999) A re-examination of text categorization methods. In: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. ACM, p 42–49

  46. Zhou F, De la Torre F, Hodgins JK (2013) Hierarchical aligned cluster analysis for tem- poral clustering of human motion. IEEE Trans Pattern Anal Mach Intell 35(3):582–596

    Article  Google Scholar 

  47. Zordan VB, Majkowska A, Chiu B, Fast M (2005) Dynamic response for motion capture animation. ACM Trans Graph 24(3):697–701. https://doi.org/10.1145/1073204.1073249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Voulodimos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voulodimos, A., Rallis, I. & Doulamis, N. Physics-based keyframe selection for human motion summarization. Multimed Tools Appl 79, 3243–3259 (2020). https://doi.org/10.1007/s11042-018-6935-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6935-z

Keywords

Navigation