Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 10, pp 13675–13712 | Cite as

Developing and evaluating a BCI video game for neurofeedback training: the case of autism

  • Jose MercadoEmail author
  • Ismael Espinosa-Curiel
  • Lizbeth Escobedo
  • Monica Tentori
Article

Abstract

BCI video games are making brain training increasingly popular and available; yet scientific evidence to support its efficacy is lacking. Real-life descriptions of BCI video games deployments in concrete scenarios are urgently needed. In this paper, we report a use case of the development and pilot-testing of a BCI video game designed to support children with autism when attending to Neurofeedback training sessions, called FarmerKeeper. Caring for children with autism may impose new cognitive, motor, behavioral, and attention challenges that current solutions targeted for other populations may not address. The goal of the game is to maintain children’s attention above a threshold to control a runner who is seeking for lost farm animals. FarmerKeeper uses a consumer-grade BCI headset to read user’s attention. We evaluated FarmerKeeper’s usability and user experience through a 4-weeks deployment study with 12 children with autism. Our quantitative results show FarmerKeeper outperforms a commercial BCI video game used for neurofeedback training, and qualitatively, FarmerKeeper could successfully support children with autism when attending to neurofeedback training sessions by possibly improving their attention and reducing their anxiety. We close reflecting on our design aspects and discussing directions for future work.

Keywords

Autism Brain-computer Interface Neurofeedback Video game BCI Attention 

Notes

Acknowledgments

We thank all the participants enrolled in this study and the researchers and reviewers who provide helpful comments on previous versions of this document. We also thank CONACYT for the first author fellowship and we thank to the CONACYT project #2209 of the fourth author for their financial support.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

References

  1. 1.
    Aamodt S, Wang S (2007) Exercise on the brain. New York TimesGoogle Scholar
  2. 2.
    Abt CC (1970) Serious games: the art and science of games that simulate life. New Yorks Viking, New York, p 6Google Scholar
  3. 3.
    Alves S, Marques A, Queirós C, Orvalho V (2013) Lifeisgame: a serious game about emotions for children with autism spectrum disorders. PsychNology J 11:191–211Google Scholar
  4. 4.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, (DSM-5®). American Psychiatric PubGoogle Scholar
  5. 5.
    Antshel KM, Zhang-James Y, Wagner KE et al (2016) An update on the comorbidity of ADHD and ASD: a focus on clinical management. Expert Rev Neurother 16:279–293CrossRefGoogle Scholar
  6. 6.
    Autism, Investigators DDMNSY 2010 P (2014) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. Morb Mortal Wkly Rep Surveill Summ 63:1–21Google Scholar
  7. 7.
    Bailey R, Wise K, Bolls P (2009) How avatar customizability affects children ’ s arousal and subjective presence during junk food – sponsored online video games. Cyberpsychology Behav 12:277–283.  https://doi.org/10.1089/cpb.2008.0292 CrossRefGoogle Scholar
  8. 8.
    Bakhshayesh AR, Hänsch S, Wyschkon A et al (2011) Neurofeedback in ADHD: a single-blind randomized controlled trial. Eur Child Adolesc Psychiatry 20:481–491.  https://doi.org/10.1007/s00787-011-0208-y CrossRefGoogle Scholar
  9. 9.
    Bernardini S, Porayska-Pomsta K (2013) Planning-based social partners for children with autism. Twenty-Third Int Conf …, pp 362–370Google Scholar
  10. 10.
    Beyer H, Holtzblatt K (1999) Contextual design. Interactions 6:32–42CrossRefGoogle Scholar
  11. 11.
    Birk MV, Atkins C, Bowey JT, Mandryk RL (2016) Fostering intrinsic motivation through avatar identification in digital games. Proc 2016 CHI Conf Hum Factors Comput Syst - CHI ’16, pp 2982–2995.  https://doi.org/10.1145/2858036.2858062
  12. 12.
    Blandón DZ, Munoz JE, Lopez DS, Gallo OH (2016) Influence of a BCI neurofeedback videogame in children with ADHD. Quantifying the brain activity through an EEG signal processing dedicated toolbox. In: Computing Conference (CCC), 2016 IEEE 11th Colombian, pp 1–8Google Scholar
  13. 13.
    Brain S (2016) Attention span statistics – statistic brain. http://www.statisticbrain.com/attention-span-statistics/. Accessed 16 Feb 2018
  14. 14.
    Brooke J (2013) SUS : a retrospective. J Usability Stud 8:29–40Google Scholar
  15. 15.
    Choon Guan Lim B, Lee T-S, Guan C et al (2010) Effectiveness of a brain-computer Interface based Programme for the treatment of ADHD: a pilot study. Psychopharmacol Bull 4343:73–82Google Scholar
  16. 16.
    Cibrian FL, Mercado J, Escobedo L, Tentori M (2018) A step towards identifying the sound preferences of children with autism. In: Proceedings of the 12th EAI international conference on pervasive computing technologies for healthcare, pp 158–167Google Scholar
  17. 17.
    Cmiel V, Janousek O, Kolarova J (2011) EEG biofeedback. Proc 4th Int Symp Appl Sci Biomed Commun Technol - ISABEL ’11, pp 1–5.  https://doi.org/10.1145/2093698.2093752
  18. 18.
    Coben R, Linden M, Myers TE (2010) Neurofeedback for autistic spectrum disorder: a review of the literature. Appl Psychophysiol Biofeedback 35:83–105.  https://doi.org/10.1007/s10484-009-9117-y CrossRefGoogle Scholar
  19. 19.
    Dickey MD (2006) Game design narrative for learning: appropriating adventure game design narrative devices and techniques for the design of interactive learning environments. Educ Technol Res Dev 54:245–263.  https://doi.org/10.1007/s11423-006-8806-y CrossRefGoogle Scholar
  20. 20.
    Engine U-G (2015) Unity technologies. Available Unity TechnolGoogle Scholar
  21. 21.
    Escobedo L, Tentori M, Quintana E et al (2014) Using augmented reality to help children with autism stay focused. IEEE Pervasive Comput 13:38–46.  https://doi.org/10.1109/MPRV.2014.19 CrossRefGoogle Scholar
  22. 22.
    Friese S (2014) Qualitative data analysis with ATLAS. ti. Sage, LondonGoogle Scholar
  23. 23.
    Fuchslocher A, Niesenhaus J, Krämer N (2011) Serious games for health: an empirical study of the game “balance” for teenagers with diabetes mellitus. Entertain Comput 2:97–101CrossRefGoogle Scholar
  24. 24.
    Garzotto F, Gelsomini M, Pappalardo A et al (2016) Using brain signals in adaptive smart spaces for disabled children. Proc 2016 CHI Conf Ext Abstr Hum Factors Comput Syst - CHI EA ’16, pp 1684–1690.  https://doi.org/10.1145/2851581.2892533
  25. 25.
    Goldstein G, Johnson CR, Minshew NJ (2001) Attentional processes in autism. J Autism Dev Disord 31:433–440.  https://doi.org/10.1023/A:1010620820786 CrossRefGoogle Scholar
  26. 26.
    Green CS, Bavelier D (2008) Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol Aging 23:692CrossRefGoogle Scholar
  27. 27.
    Hallford N, Hallford J (2001) Swords and circuitry: a designer’s guide to computer role-playing games. Premier Press, Incorporated, BostonGoogle Scholar
  28. 28.
    Hammond DC (2011) What is neurofeedback: an update. J Neurother 15:305–336.  https://doi.org/10.1080/10874208.2011.623090 CrossRefGoogle Scholar
  29. 29.
    Hardy J, Scanlon M (2009) The science behind lumosity. San Fr CA Lumos Labs, San FranciscoGoogle Scholar
  30. 30.
    Hayes GR, Hirano S, Marcu G et al (2010) Interactive visual supports for children with autism. Pers Ubiquit Comput 14:663–680.  https://doi.org/10.1007/s00779-010-0294-8 CrossRefGoogle Scholar
  31. 31.
    Hefner D, Klimmt C, Vorderer P (2007) Identification with the player character as determinant of video game enjoyment. In: Entertainment computing--ICEC 2007. Springer, pp 39–48Google Scholar
  32. 32.
    Heinrich H, Gevensleben H, Strehl U (2007) Annotation: neurofeedback - train your brain to train behaviour. J Child Psychol Psychiatry Allied Discip 48:3–16.  https://doi.org/10.1111/j.1469-7610.2006.01665.x CrossRefGoogle Scholar
  33. 33.
    Heyvaert M, Saenen L, Campbell JM et al (2014) Efficacy of behavioral interventions for reducing problem behavior in persons with autism: an updated quantitative synthesis of single-subject research. Res Dev Disabil 35:2463–2476CrossRefGoogle Scholar
  34. 34.
    Holtzblatt K, Wendell JB, Wood S (2004) Rapid contextual design: a how-to guide to key techniques for user-centered design. Elsevier, San FranciscoGoogle Scholar
  35. 35.
    IJsselsteijn W, Van Den Hoogen W, Klimmt C et al (2008) Measuring the experience of digital game enjoyment. Proceedings of measuring behavior, pp 88–89Google Scholar
  36. 36.
    Keay-Bright W (2007) Can computers create relaxation? Designing ReacTickles© software with children on the autistic spectrum. CoDesign 3:97–110.  https://doi.org/10.1080/15710880601143443 CrossRefGoogle Scholar
  37. 37.
    Keehn B, Müller RA, Townsend J (2013) Atypical attentional networks and the emergence of autism. Neurosci Biobehav Rev 37:164–183.  https://doi.org/10.1016/j.neubiorev.2012.11.014 CrossRefGoogle Scholar
  38. 38.
    Keizer AW, Verment RS, Hommel B (2010) Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. Neuroimage 49:3404–3413.  https://doi.org/10.1016/j.neuroimage.2009.11.023 CrossRefGoogle Scholar
  39. 39.
    Kim SK, Yoo EY, Lee JS et al (2014) The effects of neurofeedback training on concentration in children with attention deficit / hyperactivity disorder. Int J Bio-Science Bio-Technology 6:13–23CrossRefGoogle Scholar
  40. 40.
    Kouijzer MEJ, van Schie HT, de Moor JMH et al (2010) Neurofeedback treatment in autism. Preliminary findings in behavioral, cognitive, and neurophysiological functioning. Res Autism Spectr Disord 4:386–399.  https://doi.org/10.1016/j.rasd.2009.10.007 CrossRefGoogle Scholar
  41. 41.
    Laugwitz B, Held T, Schrepp M (2008) Construction and evaluation of a user experience questionnaire. HCI Usability Educ Work, pp 63–76.  https://doi.org/10.1007/978-3-540-89350-9_6
  42. 42.
    Lee K (2009) Evaluation of attention and relaxation levels of archers in shooting process using brain wave signal analysis algorithms. Sci Sensit 12:341–350Google Scholar
  43. 43.
    Lim C-W, Jung H-W (2013) A study on the military serious game. Adv Sci Technol Lett 39:73–77Google Scholar
  44. 44.
    Lim CG, Lee TS, Guan CT et al (2012) A brain-computer Interface based attention training program for treating attention deficit hyperactivity disorder. PLoS One 7:8.  https://doi.org/10.1371/journal.pone.0046692 CrossRefGoogle Scholar
  45. 45.
    Lubar JF (1995) Neurofeedback for the management of attention-deficit/hyperactivity disorders. In: Chapter in Schwartz MS (ed) Biofeedback: a practitioner’s guide. Guilford Press, New York, pp 493–522Google Scholar
  46. 46.
    Lubar JF, Bahler WW (1976) Behavioral management of epileptic seizures following EEG biofeedback training of the sensorimotor rhythm. Biofeedback Self Regul 1:77–104.  https://doi.org/10.1007/BF00998692 CrossRefGoogle Scholar
  47. 47.
    Mandryk RL, Kalyn M, Dang Y et al (2012) Turning off-the-shelf games into biofeedback games. Proc 14th Int ACM SIGACCESS Conf Comput Access - ASSETS ’12, pp 199.  https://doi.org/10.1145/2384916.2384952
  48. 48.
    Mandryk RL, Dielschneider S, Kalyn MR et al (2013) Games as neurofeedback training for children with FASD. Proc 12th Int Conf Interact Des Child - IDC ’13, pp 165–172.  https://doi.org/10.1145/2485760.2485762
  49. 49.
    Mandryk RL, Nacke LE, Mandryk RL (2016) Biometrics in gaming and entertainment technologies. In: Biometrics a data driven world trends, Technol challenges, pp 191–224CrossRefGoogle Scholar
  50. 50.
    May T, Rinehart N, Wilding J, Cornish K (2013) The role of attention in the academic attainment of children with autism spectrum disorder. J Autism Dev Disord 43:2147–2158.  https://doi.org/10.1007/s10803-013-1766-2 CrossRefGoogle Scholar
  51. 51.
    Mihajlovic V, Grundlehner B, Vullers R, Penders J (2015) Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J Biomed Heal Informatics 19:6–21.  https://doi.org/10.1109/JBHI.2014.2328317 CrossRefGoogle Scholar
  52. 52.
    Nouchi R, Taki Y, Takeuchi H et al (2012) Brain training game improves executive functions and processing speed in the elderly: a randomized controlled trial. PLoS One 7:e29676.  https://doi.org/10.1371/journal.pone.0029676 CrossRefGoogle Scholar
  53. 53.
    Ochs E, Kremer-Sadlik T, Sirota KG, Solomon O (2004) Autism and the social world: an anthropological perspective. Discourse Stud 6:147–183CrossRefGoogle Scholar
  54. 54.
    Owen AM, Hampshire A, Grahn JA et al (2010) Putting brain training to the test. Nature 465:775–778.  https://doi.org/10.1038/nature09042 CrossRefGoogle Scholar
  55. 55.
    Patsis G, Sahli H, Verhelst W, De Troyer O (2013) Evaluation of attention levels in a Tetris game using a brain computer interface. In: Carberry S, Weibelzahl S, Micarelli A, Semeraro G (eds) User modeling, adaptation, and personalization. Springer Berlin Heidelberg, Berlin, pp 127–138CrossRefGoogle Scholar
  56. 56.
    Pineda JA, Brang D, Hecht E et al (2008) Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Res Autism Spectr Disord 2:557–581.  https://doi.org/10.1016/j.rasd.2007.12.003 CrossRefGoogle Scholar
  57. 57.
    Planchon J, Vacher A, Comblet J et al (2018) Serious game training improves performance in combat life-saving interventions. Injury 49:86–92CrossRefGoogle Scholar
  58. 58.
    Pope AT, Palsson OS (2001) Helping video games “rewire our minds”. Int J Soc Psychiatry 54:370–382Google Scholar
  59. 59.
    Rauschenberger M, Schrepp M, Perez-Cota M et al (2013) Efficient measurement of the user experience of interactive products. How to use the user experience questionnaire (UEQ). Example: Spanish language version. Int J Interact Multimed Artif Intell 2:39–45.  https://doi.org/10.9781/ijimai.2013.215 Google Scholar
  60. 60.
    Read JC, MacFarlane S (2006) Using the fun toolkit and other survey methods to gather opinions in child computer interaction. In: Proceedings of the 2006 conference on Interaction design and children, pp 81–88Google Scholar
  61. 61.
    Rebolledo-Mendez G, Dunwell I, Martínez-Mirón EA et al (2009) Assessing NeuroSky’s usability to detect attention levels in an assessment exercise. In: Jacko JA (ed) Human-computer interaction. New trends. Springer Berlin Heidelberg, Berlin, pp 149–158CrossRefGoogle Scholar
  62. 62.
    Rego P, Moreira PM, Reis LP (2010) Serious games for rehabilitation: a survey and a classification towards a taxonomy. In: Information Systems and Technologies (CISTI), 2010 5th Iberian Conference on, pp 1–6Google Scholar
  63. 63.
    Renard Y, Lotte F, Gibert G et al (2010) OpenViBE : an open-source software platform to design , test , and use brain – computer interfaces in real and virtual environments. Presence 19:35–53.  https://doi.org/10.1162/pres.19.1.35 CrossRefGoogle Scholar
  64. 64.
    Sawyer B, Smith P (2008) Serious games taxonomy. In: Slides from the serious games summit at the game developers conferenceGoogle Scholar
  65. 65.
    Schoneveld EA, Malmberg M, Lichtwarck-Aschoff A et al (2016) A neurofeedback video game (MindLight) to prevent anxiety in children: a randomized controlled trial. Comput Hum Behav 63:321–333.  https://doi.org/10.1016/j.chb.2016.05.005 CrossRefGoogle Scholar
  66. 66.
    Schwartz MS, Andrasik F (2017) Biofeedback: a practitioner’s guide. Guilford Publications, New YorkGoogle Scholar
  67. 67.
    Shaphiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611MathSciNetCrossRefGoogle Scholar
  68. 68.
    Sitaram R, Ros T, Stoeckel L et al (2017) Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18:86–100.  https://doi.org/10.1038/nrn.2016.164 CrossRefGoogle Scholar
  69. 69.
    Southam-Gerow MA, Kendall PC (2002) Emotion regulation and understanding: implications for child psychopathology and therapy. Clin Psychol Rev 22:189–222.  https://doi.org/10.1016/S0272-7358(01)00087-3 CrossRefGoogle Scholar
  70. 70.
    Spence C (2011) Crossmodal correspondences: a tutorial review. Atten Percept Psychophysiol 73:971–995.  https://doi.org/10.3758/s13414-010-0073-7 CrossRefGoogle Scholar
  71. 71.
    Steiner NJ, Frenette EC, Rene KM et al (2014) Neurofeedback and cognitive attention training for children with attention-deficit hyperactivity disorder in schools. J Dev Behav Pediatr 35:18–27.  https://doi.org/10.1097/DBP.0000000000000009 CrossRefGoogle Scholar
  72. 72.
    Strauss A, Corbin J (1998) Basics of qualitative research techniques. Sage publications, Thousand OaksGoogle Scholar
  73. 73.
    Student (1908) The probable error of a mean. Biometrika 6:1–25CrossRefGoogle Scholar
  74. 74.
    Tan D, Nijholt A (2010) Brain-computer interfaces and human-computer interaction. In: Brain-computer interfaces. Springer, pp 3–19Google Scholar
  75. 75.
    Tang ST, McCorkle R (2002) Use of family proxies in quality of life research for cancer patients at the end of life: a literature review. Cancer Investig 20:1086–1104CrossRefGoogle Scholar
  76. 76.
    Tang YY, Posner MI (2014) Training brain networks and states. Trends Cogn Sci 18:345–350.  https://doi.org/10.1016/j.tics.2014.04.002 CrossRefGoogle Scholar
  77. 77.
    Turkay S, Kinzer CK (2014) The effects of avatar-based customization on player identification. Int J Gaming Comput Simulations 6:1–25.  https://doi.org/10.4018/ijgcms.2014010101 CrossRefGoogle Scholar
  78. 78.
    van Steensel FJ, Bögels SM, Perrin S (2011) Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clin Child Fam Psychol Rev 14:302–317.  https://doi.org/10.1007/s10567-011-0097-0 CrossRefGoogle Scholar
  79. 79.
    Vernon D, Egner T, Cooper N et al (2003) The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int J Psychophysiol 47:75–85.  https://doi.org/10.1016/S0167-8760(02)00091-0 CrossRefGoogle Scholar
  80. 80.
    Wang Q, Sourina O, Nguyen MK (2010) EEG-based “serious” games design for medical applications. Proc - 2010 Int Conf Cyberworlds, CW 2010, pp 270–276.  https://doi.org/10.1109/CW.2010.56
  81. 81.
    Whyte EM, Smyth JM, Scherf KS (2015) Designing serious game interventions for individuals with autism. J Autism Dev Disord 45:3820–3831.  https://doi.org/10.1007/s10803-014-2333-1 CrossRefGoogle Scholar
  82. 82.
    Wilcoxon F (1946) Individual comparisons of grouped data by ranking methods. J Econ Entomol 39:269.  https://doi.org/10.1093/jee/39.2.269 CrossRefGoogle Scholar
  83. 83.
    Wilkinson P (2016) A brief history of serious games Phil. Entertain Comput Serious Games 9970, pp 17–41.  https://doi.org/10.1007/978-3-319-46152-6
  84. 84.
    Wilkinson N, Ang RP, Goh DH (2008) Online video game therapy for mental health concerns: a review. Int J Soc Psychiatry 54:370–382CrossRefGoogle Scholar
  85. 85.
    Yoon H, Park S-W, Lee Y-K, Jang J-H (2013) Emotion recognition of serious game players using a simple brain computer interface. 2013 Int Conf Inf Commun Technol Converg ICTC 2013, Oct 14, 2013 - Oct 16, 2013, pp 783–786.  https://doi.org/10.1109/ICTC.2013.6675478
  86. 86.
    Zalapa R, Tentori M (2013) Movement-based and tangible interactions to offer body awareness to children with autism. In: Urzaiz G, Ochoa SF, Bravo J et al (eds) Ubiquitous computing and ambient intelligence. Context-awareness and context-driven interaction. Springer International Publishing, Cham, pp 127–134CrossRefGoogle Scholar
  87. 87.
    Zickefoose S, Hux K, Brown J, Wulf K (2013) Let the games begin: a preliminary study using attention process training-3 and lumosity™ brain games to remediate attention deficits following traumatic brain injury. Brain Inj 27:707–716.  https://doi.org/10.3109/02699052.2013.775484 CrossRefGoogle Scholar
  88. 88.
    Zoefel B, Huster RJ, Herrmann CS (2011) Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54:1427–1431.  https://doi.org/10.1016/j.neuroimage.2010.08.078 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jose Mercado
    • 1
    Email author
  • Ismael Espinosa-Curiel
    • 2
  • Lizbeth Escobedo
    • 3
  • Monica Tentori
    • 1
  1. 1.Department of Computer ScienceCICESEEnsenadaMexico
  2. 2.CICESE-UT3TepicMexico
  3. 3.School of EngineeringCETYS UniversidadTijuanaMexico

Personalised recommendations