Skip to main content
Log in

BIIGA: Bioinformatics inspired image grouping approach

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Initial work on image phylogeny used different approaches like the minimum spanning tree etc. The less investigated attempt is a bioinformatics-inspired approach for image phylogeny. The aim of this paper is to bridge this gap by generating image phylogeny with the concept of phylogenetic trees in bioinformatics. These trees were developed by using multiple aligned DNA sequences of original or multiple print-scan (MPS) degraded variants of watermarked (W) and non-watermarked (NW) images. Experimental results disclosed the viability of a proposed novel approach and effectively grouped original or MPS degraded variants of the W or NW images. The proposed method’s claims may revolutionise our knowledge of degraded (D) or non-degraded (ND) W and NW image grouping. It may direct to a new era of phylogenetic tree-based W or NW degraded or original images for developing the next generation of degraded (by MPS) W and NW grouping softwares. To the best of our knowledge, this is the first time such a method has been employed for image grouping. Our contributions are: (a) biologically-based image encoding to DNA letters (b) multiple sequence alignment (MSA) of DNA-encoded images (c) phylogenetic tree generation to group MPS-degraded W or NW images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  2. Bacon DJ, Anderson WF (1986) Multiple sequence alignment. J Mol Biol 191(2):153–161

    Article  Google Scholar 

  3. Bhargava N, Sharma MM, Garhwal AS, Mathuria M (2012) Digital image authentication system based on digital watermarking. International Conference on Radar, Communication and Computing (ICRCC), Tiruvannamalai

    Book  Google Scholar 

  4. Bicego M, Danese S, Melzi S, Castellani U (2015) A Bioinformatics Approach to 3D Shape Matching. European Conference on Computer Vision, Zurich

    Book  Google Scholar 

  5. Bicego M, Lovato P (2012) 2D shape recognition using biological sequence alignment tools. 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba

    Google Scholar 

  6. Bicego M, Lovato P (2016) A bioinformatics approach to 2D shape classification. Comput Vis Image Underst 145:59–69

    Article  Google Scholar 

  7. Chambers J, Yan WQ, Garhwal AS, Kankanhalli M (2015) Currency security and forensics: a survey. Multimedia Tools and Applications 74(11):4013–4043

    Article  Google Scholar 

  8. Charles Darwin - Alfred Russel Wallace and their Theory of Evolution [Online]. Available: http://www.age-of-the-sage.org/evolution/charles_darwin_alfred_russel_wallace.html. [Accessed 31 1 2017]

  9. Church GM, Gao Y, Kosuri S (2012) Next-Generation Digital Information Storage in DNA. Science 337(6102):1628

    Article  Google Scholar 

  10. Cox JP (2001) Long-term data storage in DNA. Trends Biotechnol 19(7):247–250

    Article  Google Scholar 

  11. Darwin C (1859) On the Origin of the Species by Means of Natural Selection: or, The Preservation of Favoured Races in the Struggle for Life. J. Murray, London

    Google Scholar 

  12. Davis J (1996) Microvenus. Art Journal 55(1):70–74

    Article  Google Scholar 

  13. de O Costa F et al (2014) Image Phylogeny Forests Reconstruction. IEEE Transactions on Information Forensics and Security 9(10):1533–1546

    Article  Google Scholar 

  14. Dias Z, Goldensteiin S, Rocha A (2013) Toward image phylogeny forests: Automatically recovering semantically similar image relationships. Forensic Sci Int 231(1–3):178–189

    Article  Google Scholar 

  15. Dias Z, Goldenstein S, Rocha A (2013) Exploring Heuristic and Optimum Branching Algorithms for Image Phylogeny. J Vis Commun Image Represent 24(7):1124–1134

    Article  Google Scholar 

  16. Dias Z, Goldenstein S, Rocha A (2013) Large-Scale Image Phylogeny: Tracing Image Ancestral Relationships. IEEE MultiMedia 20(3):58–70

    Article  Google Scholar 

  17. Dias Z, Rocha A, Goldenstein S (2010) First steps toward image phylogeny. IEEE International Workshop on Information Forensics and Security, Seattle

    Book  Google Scholar 

  18. Dias Z, Rocha A, Goldenstein S (2011) Video Phylogeny: Recovering near-duplicate video relationships. IEEE International Workshop on Information Forensics and Security, Iguacu Falls

    Google Scholar 

  19. Dias Z, Rocha A, Goldenstein S (2012) Image Phylogeny by Minimal Spanning Trees. IEEE Transactions on Information Forensics and Security 7(2):774–788

    Article  Google Scholar 

  20. Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  Google Scholar 

  21. Felsenstein J (1988) Phylogenies from Molecular Sequences: Inference and Reliability. Annu Rev Genet 22(1):521–565

    Article  MathSciNet  Google Scholar 

  22. Garhwal AS (2018) Bioinformatics-Inspired Analysis for Watermarked Images with Multiple Print and Scan. New Zealand: PhD Thesis, Auckland University of Technology

  23. Garhwal AS, Yan WQ (2015) Evaluations of Image Degradation from Multiple Scan-Print. International Journal of Digital Crime and Forensics (IJDCF) 7(4):55–65

    Article  Google Scholar 

  24. Garhwal AS, Yan WQ (2018) BIIIA: a bioinformatics-inspired image identification approach. Multimedia Tools Application: 1–16

  25. Garhwal AS, Yan WQ, Narayanan A (2017) Image phylogeny for simulating multiple print-scan. IVCNZ17, Christchurch

    Book  Google Scholar 

  26. Goldman N et al Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494(7435):77–80

  27. Grass RN et al (2015) Robust Chemical Preservation of Digital Information on DNA in Silica with Error-Correcting Codes. Angew Chem Int Ed 54(8):2552–2555

    Article  Google Scholar 

  28. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89(22):10915–10919

    Article  Google Scholar 

  29. Hennig W (1966) Phylogenetic Systematics. University of Illinois Press, Urbana

    Google Scholar 

  30. Katoh K, Asimenos G, Toh H (2009) Multiple Alignment of DNA Sequences with MAFFT. Bioinformatics for DNA Sequence Analysis 537:39–64

    Article  Google Scholar 

  31. Katoh K, Frith MC (2012) Adding unaligned sequences into an existing alignment using MAFFT and LAS. Bioinformatics 28(23):3144–3146

    Article  Google Scholar 

  32. Katoh K, Kuma K-I, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33(2):511–518

    Article  Google Scholar 

  33. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  Google Scholar 

  34. Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 30(4):772–780

    Article  Google Scholar 

  35. Katoh K, Standley DM (2015) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 30(4):772–780

    Article  Google Scholar 

  36. Katoh K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 32(13):1933–1942

    Article  Google Scholar 

  37. Katoh K, Toh H (2007) PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics 23(3):372–374

    Article  Google Scholar 

  38. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9(4):286–298

    Article  Google Scholar 

  39. Katoh K, Toh H (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9(1):212

    Article  Google Scholar 

  40. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26(15):1899–1900

    Article  Google Scholar 

  41. Kiah HM, Puleo GJ, Milenkovic O (2015) Codes for DNA storage channels. IEEE Information Theory Workshop (ITW), Jerusalem

    Book  MATH  Google Scholar 

  42. Kumar S, Stecher G, Peterson G, Tamura K (2012) MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28(20):2685–2686

    Article  Google Scholar 

  43. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  Google Scholar 

  44. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17(12):1244–1245

    Article  Google Scholar 

  45. Kumar S, Tamura K, Nei M (1994) MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Bioinformatics 10(2):189–191

    Article  Google Scholar 

  46. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5(2):150–160

    Article  Google Scholar 

  47. Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41(W1):W22–W28

    Article  Google Scholar 

  48. Limbachiya D, Dhameliya V, Khakhar M, Gupta MK (2015) On optimal family of codes for archival DNA storage. Seventh International Workshop on Signal Design and its Applications in Communications, Bengaluru

    Book  Google Scholar 

  49. Lobo I (2008) Basic Local Alignment Search Tool (BLAST). Nature Education 1(1):215

    Google Scholar 

  50. Lovato P, Bicego M (2012) 2D Shapes Classification Using BLAST. Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Hiroshima

    Book  Google Scholar 

  51. MAFT, "MAFT version 7," CBRC AIST, [Online]. Available: http://mafft.cbrc.jp/alignment/server/. [Accessed 12 2016]

  52. Michener CD, Sokal RR (1957) A Quantitative Approach to a Problem in Classification. Evolution 11(2):130–162

    Article  Google Scholar 

  53. Naidu V, Narayanan A (2014) Further Experiments in Biocomputational Structural Analysis of Malware. 10th IEEE International Conference on Natural Computation (ICNC)

  54. Naidu V, Narayanan A (2016) A Syntactic Approach for Detecting Viral Polymorphic Malware Variants. Heidelberg

  55. Naidu V, Narayanan A (2016) Needleman-Wunsch and Smith-Waterman Algorithms for Identifying Viral Polymorphic Malware Variant. 14th IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC), Auckland

    Book  Google Scholar 

  56. Naidu V, Narayanan A (2016) The Effects of Using Different Substitution Matrices in a String-Matching Technique for Identifying Viral Polymorphic Malware Variants. IEEE Congress on Evolutionary Computation (WCCI - IEEE CEC), Vancouver

    Google Scholar 

  57. Nucci M, Tagliasacchi M, Tubaro S (2013) A Phylogenetic Analysis of Near-Duplicate Audio Tracks. IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), Pula

    Book  Google Scholar 

  58. Oliveira A et al (2014) Multiple parenting identification in image phylogeny. IEEE International Conference on Image Processing (ICIP), Paris

    Book  Google Scholar 

  59. Rubio-Largo Á, Vega-Rodríguez MA, González-Álvarez DL (2015) Parallel H4MSA for Multiple Sequence Alignment. IEEE Trustcom/BigDataSE/ISPA, Helsinki

    Book  Google Scholar 

  60. Stewart CB (2000) Phylogenetic Analysis. New York: Ph.D Thesis, SUNY, Albany, University at Albany

  61. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(1):1596–1599

    Article  Google Scholar 

  62. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  Google Scholar 

  63. Tamura K et al (2011) MEGA5: Molecular Evolutionary Genetic Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28(10):2731–2739

    Article  Google Scholar 

  64. "The History of Evolution Thought," [Online]. Available: http://evolution.berkeley.edu/evolibrary/article/history_14. [Accessed 1 1 2017]

  65. Wong PC, Wong KK (2003) Foote H (2003) Organic Data Memory using the DNA Approach. Communication of the ACM 46(1):95–98

    Article  Google Scholar 

  66. Yamada KD, Tomii K, Katoh K (2016) Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees. Bioinformatics 32(21):3246–3325

    Article  Google Scholar 

  67. Yan WQ, Chambers J, Garhwal AS (2015) An empirical approach for currency identification. Multimedia Tools and Applications 74(13):4723–4733

    Article  Google Scholar 

  68. Yang Z, Rannala B (2012) Molecular Phylogenetics: Principles and Practice. Nat Rev Genet 13(5):303–314

    Article  Google Scholar 

  69. Yazdi SM et al (2015) A Rewritable, Random-Access DNA-Based Storage System. Sci Rep 5:14138

    Article  Google Scholar 

  70. Yim AK et al (2014) The Essential Component in DNA-Based Information Storage System: Robust Error-Tolerating Module. Frontiers in Bioengineering and Biotechnology 2:49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhimanyu Singh Garhwal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garhwal, A.S., Yan, W.Q. BIIGA: Bioinformatics inspired image grouping approach. Multimed Tools Appl 78, 14355–14377 (2019). https://doi.org/10.1007/s11042-018-6817-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6817-4

Keywords

Navigation