Skip to main content
Log in

A novel hybrid image fusion method based on integer lifting wavelet and discrete cosine transformer for visual sensor networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In recent years, multimedia data is most used in the world such as image, audio, video and text. For reducing the great amount of generated data and for obtaining the better sensing performance, several researches have been focused on multimedia data fusion (MDF). The main objective of image fusion techniques in the visual sensor networks (VSNs) is to combine multiple images of the same scene captured by different cameras and with various focused regions into a single informative image. In this paper, we propose an efficient hybrid image fusion method which is suitable for VSNs based on the integer lifting wavelet transform (ILWT) and the discrete cosine transformer (DCT). The suggested fusion algorithm consists of two steps. Firstly, the approximate coefficients (low frequencies) generated by the ILWT are fused by selecting the variance as an activity level measure in the DCT domain. Secondly, the detail coefficients (high frequencies) are fused by taking the optimum weighted average based on the correlation between coefficients in ILWT domain. Due to the integer operations in ILWT domain, the proposed method overcomes the loss of information, computational complexity, time and energy consumption and memory space. Extensive experiments are performed to demonstrate the outperforming of the proposed method compared qualitatively and quantitatively with some literature image fusion techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdipour M, Nooshyar M (2016) Multi-focus image fusion using sharpness criteria for visual sensor networks in wavelet domain. Comput Electr Eng 51:74–88

    Article  Google Scholar 

  2. Adelson EH et al (1984) Pyramid methods in image processing. RCA Engineer 29(6):33–41

    Google Scholar 

  3. Albanesi MG et al (2017) A new class of wavelet-based metrics for image similarity assessment. Journal of Mathematical Imaging and Vision 1-19

  4. Bai X et al (2015) Quadtree-based multi-focus image fusion using a weighted focus-measure. Information Fusion 22:105–118

    Article  Google Scholar 

  5. Bavirisetti DP, Dhuli R (2016) Two-scale image fusion of visible and infrared images using saliency detection. Infrared Phys Technol 76:52–64

    Article  Google Scholar 

  6. Bavirisetti DP et al (2017) Fusion of MRI and CT images using guided image filter and image statistics. Int J Imaging Syst Technol 27(3):227–237

    Article  Google Scholar 

  7. Ben Hamza A et al (2005) A multiscale approach to pixel-level image fusion. Integrated Computer-Aided Engineering 12(2):135–146

    Article  Google Scholar 

  8. Bhateja V et al (2015) Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sensors J 15(12):6783–6790

    Article  Google Scholar 

  9. Bickelhaupt S et al (2017) Independent value of image fusion in unenhanced breast MRI using diffusion-weighted and morphological T2-weighted images for lesion characterization in patients with recently detected BI-RADS 4/5 x-ray mammography findings. Eur Radiol 27(2):562–569

    Article  Google Scholar 

  10. Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  11. Calderbank AR, et al (1997) Lossless image compression using integer to integer wavelet transforms. in Image Processing, 1997. Proceedings., International Conference on. IEEE

  12. Calderbank A et al (1998) Wavelet transforms that map integers to integers. Appl Comput Harmon Anal 5(3):332–369

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao L et al (2015) Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. IEEE Signal Processing Letters 22(2):220–224

    Article  MathSciNet  Google Scholar 

  14. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250

    Article  Google Scholar 

  15. Charfi Y, Wakamiya N, Murata M (2009) Challenging issues in visual sensor networks. IEEE Wirel Commun 16(2):44–49

    Article  Google Scholar 

  16. Chaudhuri S, Kotwal K (2013) Hyperspectral image fusion. Springer, Berlin

    Book  Google Scholar 

  17. Chen Z, Muramatsu S (2016) Multi-focus pixel-based image fusion in dual domain. in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE

  18. Chen D et al (2017) Invertible update-then-predict integer lifting wavelet for lossless image compression. EURASIP Journal on Advances in Signal Processing 2017(1):8

    Article  Google Scholar 

  19. Choi J, Yu K, Kim Y (2011) A new adaptive component-substitution-based satellite image fusion by using partial replacement. IEEE Trans Geosci Remote Sens 49(1):295–309

    Article  Google Scholar 

  20. Daubechies I, Sweldens W (1998) Factoring wavelet transforms into lifting steps. J Fourier Anal Appl 4(3):247–269

    Article  MathSciNet  MATH  Google Scholar 

  21. Dillen G et al (2003) Combined line-based architecture for the 5-3 and 9-7 wavelet transform of JPEG2000. IEEE Transactions on Circuits and Systems for Video Technology 13(9):944–950

    Article  Google Scholar 

  22. Gharbia, R., et al (2014) Remote sensing image fusion approach based on Brovey and wavelets transforms. in Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014. Springer

  23. Ghassemian H (2016) A review of remote sensing image fusion methods. Information Fusion 32:75–89

    Article  Google Scholar 

  24. Grangetto M et al (2002) Optimization and implementation of the integer wavelet transform for image coding. IEEE Trans Image Process 11(6):596–604

    Article  MathSciNet  Google Scholar 

  25. Haghighat MBA, Aghagolzadeh A, Seyedarabi H (2011) Multi-focus image fusion for visual sensor networks in DCT domain. Comput Electr Eng 37(5):789–797

    Article  MATH  Google Scholar 

  26. Hill P, Al-Mualla ME, Bull D (2017) Perceptual Image Fusion Using Wavelets. IEEE Trans Image Process 26(3):1076–1088

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu G, Zheng Y, Qin X-Q (2011) Image Fusion based on integer lifting wavelet transform, in Image Fusion and Its Applications. InTech

  28. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment. Electron Lett 44(13):800–801

    Article  Google Scholar 

  29. Jagalingam P, Hegde AV (2015) A review of quality metrics for fused image. Aquatic Procedia 4:133–142

    Article  Google Scholar 

  30. Kumar BS (2013) Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. SIViP 7(6):1125–1143

    Article  Google Scholar 

  31. Kumar BS (2015) Image fusion based on pixel significance using cross bilateral filter. SIViP 9(5):1193–1204

    Article  Google Scholar 

  32. Kwarteng P, Chavez A (1989) Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogramm Eng Remote Sens 55:339–348

    Google Scholar 

  33. Lewis JJ et al (2007) Pixel-and region-based image fusion with complex wavelets. Information Fusion 8(2):119–130

    Article  Google Scholar 

  34. Li H, Manjunath B, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing 57(3):235–245

    Article  Google Scholar 

  35. Li S, Yang B (2008) Multifocus image fusion using region segmentation and spatial frequency. Image Vis Comput 26(7):971–979

    Article  Google Scholar 

  36. Li S et al (2017) Pixel-level image fusion: A survey of the state of the art. Information Fusion 33:100–112

    Article  Google Scholar 

  37. Liu Z et al (2017) A novel multi-focus image fusion approach based on image decomposition. Information Fusion 35:102–116

    Article  Google Scholar 

  38. Mangalraj P, Agrawal A (2015) Fusion of Multi-Sensor Satellite Images Using Non-Subsampled Contourlet Transform. Procedia Computer Science 54:713–720

    Article  Google Scholar 

  39. Ming L, Shunjun W (2003) A new image fusion algorithm based on wavelet transform. in Computational Intelligence and Multimedia Applications, 2003. ICCIMA 2003. Proceedings. Fifth International Conference on. IEEE

  40. Nejati M, Samavi S, Shirani S (2015) Multi-focus image fusion using dictionary-based sparse representation. Information Fusion 25:72–84

    Article  Google Scholar 

  41. Nirmala DE, Vaidehi V (2015) Comparison of Pixel-level and feature level image fusion methods. in Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on. IEEE

  42. Ouerghemmi W, et al (2017) A two-step decision fusion strategy: application to hyperspectral and multispectral images for urban classification. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 42

  43. Petrovic V, Cootes T (2006) Objectively optimised multisensor image fusion. in Information Fusion, 2006 9th International Conference on. IEEE

  44. Phamila YAV, Amutha R (2014) Discrete Cosine Transform based fusion of multi-focus images for visual sensor networks. Signal Process 95:161–170

    Article  Google Scholar 

  45. Rabbani M, Joshi R (2002) An overview of the JPEG 2000 still image compression standard. Signal Process Image Commun 17(1):3–48

    Article  Google Scholar 

  46. Rahmani S et al (2010) An adaptive IHS pan-sharpening method. IEEE Geosci Remote Sens Lett 7(4):746–750

    Article  Google Scholar 

  47. Redondi A et al (2015) Cooperative image analysis in visual sensor networks. Ad Hoc Netw 28:38–51

    Article  Google Scholar 

  48. Rockinger O (1997) Image sequence fusion using a shift-invariant wavelet transform. in Image Processing, 1997. Proceedings., International Conference on. IEEE

  49. Selesnick IW, Baraniuk RG, Kingsbury NC (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6):123–151

    Article  Google Scholar 

  50. Shah P, Merchant SN, Desai UB (2013) Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition. Signal, Image and Video Processing 1-15

  51. Shah, P., et al (2011) A novel multifocus image fusion scheme based on pixel significance using wavelet transform. in IVMSP Workshop, 2011 IEEE 10th. IEEE

  52. Shahdoosti HR, Ghassemian H (2016) Combining the spectral PCA and spatial PCA fusion methods by an optimal filter. Information Fusion 27:150–160

    Article  Google Scholar 

  53. Siddalingesh G et al (2014) Feature-Level Image Fusion Using DWT, SWT, and DT-CWT, in Emerging Research in Electronics, Computer Science and Technology. Springer. p. 183-194

  54. Singh R, Khare A (2014) Fusion of multimodal medical images using Daubechies complex wavelet transform–A multiresolution approach. Information Fusion 19:49–60

    Article  Google Scholar 

  55. Stathaki T (2011) Image fusion: algorithms and applications. Academic Press, Cambridge

    Google Scholar 

  56. Sweldens W (1998) The lifting scheme: A construction of second generation wavelets. SIAM J Math Anal 29(2):511–546

    Article  MathSciNet  MATH  Google Scholar 

  57. Tang J (2004) A contrast based image fusion technique in the DCT domain. Digital Signal Processing 14(3):218–226

    Article  Google Scholar 

  58. Tavli B et al (2012) A survey of visual sensor network platforms. Multimedia Tools and Applications 60(3):689–726

    Article  Google Scholar 

  59. Tian J et al (2011) Multi-focus image fusion using a bilateral gradient-based sharpness criterion. Opt Commun 284(1):80–87

    Article  Google Scholar 

  60. Vijayarajan R, Muttan S (2015) Discrete wavelet transform based principal component averaging fusion for medical images. AEU-International Journal of Electronics and Communications 69(6):896–902

    Article  Google Scholar 

  61. Wang Z, Yu X, Zhang L (2008) A remote sensing image fusion algorithm based on integer wavelet transform. in Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on. IEEE

  62. Wang Z et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  63. Wang X et al (2015) An image fusion algorithm based on lifting wavelet transform. J Opt 17(5):055702

    Article  Google Scholar 

  64. Wang, L.-j., et al. (2016) Image fusion via feature residual and statistical matching. IET Computer Vision

  65. Wu J et al (2005) Remote sensing image fusion based on average gradient of wavelet transform. in Mechatronics and Automation, 2005 IEEE International Conference. IEEE

  66. Xia X, Fang S, Xiao Y (2014) High resolution image fusion algorithm based on multi-focused region extraction. Pattern Recogn Lett 45:115–120

    Article  Google Scholar 

  67. Xu W, Li M, Wang X (2017) Information fusion based on information entropy in fuzzy multi-source incomplete information system. International Journal of Fuzzy Systems 19(4):1200–1216

    Article  MathSciNet  Google Scholar 

  68. Xu X, Wang Y, Chen S (2016) Medical image fusion using discrete fractional wavelet transform. Biomedical Signal Processing and Control 27:103–111

    Article  Google Scholar 

  69. Xydeas C, Petrovic V (2000) Objective image fusion performance measure. Electron Lett 36(4):308–309

    Article  Google Scholar 

  70. Yang B, Jing Z-l, Zhao H-t (2010) Review of pixel-level image fusion. Journal of Shanghai Jiaotong University (Science) 15:6–12

    Article  Google Scholar 

  71. Yang B, Li S (2012) Pixel-level image fusion with simultaneous orthogonal matching pursuit. Information Fusion 13(1):10–19

    Article  Google Scholar 

  72. Yang Y et al (2014) Dual-tree complex wavelet transform and image block residual-based multi-focus image fusion in visual sensor networks. Sensors 14(12):22408–22430

    Article  Google Scholar 

  73. Yang Y et al (2015) Multifocus image fusion based on NSCT and focused area detection. IEEE Sensors J 15(5):2824–2838

    Google Scholar 

  74. Yang Y et al (2017) A hybrid method for multi-focus image fusion based on fast discrete curvelet transform. IEEE Access

  75. Yang J et al (2017) Image Fusion for Spatial Enhancement of Hyperspectral Image via Pixel Group Based Non-Local Sparse Representation. Remote Sens 9(1):53

    Article  MathSciNet  Google Scholar 

  76. Yu B et al (2016) Hybrid dual-tree complex wavelet transform and support vector machine for digital multi-focus image fusion. Neurocomputing 182:1–9

    Article  Google Scholar 

  77. Zhang Y, Bai X, Wang T (2017) Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Information Fusion 35:81–101

    Article  Google Scholar 

  78. Zhang Q, Maldague X (2016) An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing. Infrared Phys Technol 74:11–20

    Article  Google Scholar 

  79. Zhang D, et al (2009) Decision level fusion, in Advanced Pattern Recognition Technologies with Applications to Biometrics. IGI Global. p. 328-348

  80. Zhang B et al (2016) Multi-focus image fusion based on sparse decomposition and background detection. Digital Signal Processing 58:50–63

    Article  Google Scholar 

  81. Zhang B et al (2016) Multi-focus image fusion algorithm based on focused region extraction. Neurocomputing 174:733–748

    Article  Google Scholar 

  82. Zhou Z, Li S, Wang B (2014) Multi-scale weighted gradient-based fusion for multi-focus images. Information Fusion 20:60–72

    Article  Google Scholar 

  83. Zuo Y et al (2017) Airborne Infrared and Visible Image Fusion Combined with Region Segmentation. Sensors 17(5):1127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slami Saadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latreche, B., Saadi, S., Kious, M. et al. A novel hybrid image fusion method based on integer lifting wavelet and discrete cosine transformer for visual sensor networks. Multimed Tools Appl 78, 10865–10887 (2019). https://doi.org/10.1007/s11042-018-6676-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6676-z

Keywords

Navigation