Multimedia Tools and Applications

, Volume 78, Issue 6, pp 7381–7417 | Cite as

Image denoising based on improved bidimensional empirical mode decomposition thresholding technology

  • Di Liu
  • Xiyuan ChenEmail author


In this paper, a novel image denoising methodology based on improved bidimensional empirical mode decomposition and soft interval thresholding technique is proposed. First, a noise compressed image is constructed. Then, the noise compressed image is decomposed by means of bidimensional empirical mode decomposition (BEMD) into a series of intrinsic mode functions (IMFs), which are separated into signal-dominant IMFs and noise-dominant IMFs using a similarity measure based on ℓ2-norm and a probability density function, and a soft interval thresholding technique is used adaptively to remove the noise inherent in noise-dominant IMFs. Finally, a denoised image is reconstructed by combining the signal-dominant IMFs and the denoised noise-dominant IMFs. The performance of the proposed denoising method is evaluated by using multiple images with different types of noise, and results from the proposed method are compared with those of other conventional methods in various noisy environments. Simulation results demonstrate that the proposed denoising method outperforms other denoising methods in terms of peak signal-to-noise ratio, mean square error and energy of the first IMF.


BEMD Image denoising Noise compression 



This work is supported by the National Natural Science Foundation of China (Grant No. 51375087, 51405203) and the Transformation Program of Science and Technology Achievements of Jiangsu Province (Grant No. BA2016139).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Abergel R, Louchet C, Moisan L, Zeng T (2015) Total variation restoration of images corrupted by poisson noise with iterated conditional expectations. In: International Conference on Scale Space and Variational Methods in Computer Vision. Springer, pp 178–190Google Scholar
  2. 2.
    Ahn J, Kwak D, Koh B (2014) Fault detection of a roller-bearing system through the EMD of a wavelet Denoised signal. SENSORS 14(8):15022–15038. CrossRefGoogle Scholar
  3. 3.
    Amo C, de Santiago L, Barea R (2017) Analysis of gamma-band activity from human EEG using empirical mode decomposition. Sensors 17(5):989–1003. CrossRefGoogle Scholar
  4. 4.
    An F, Lin D, Zhou X, Sun Z (2015) Enhancing image Denoising performance of Bidimensional empirical mode decomposition by improving the edge effect. Int J Antenn Propag 2015:1–12. CrossRefGoogle Scholar
  5. 5.
    Bindilatti AA, Mascarenhas NDA (2013) A nonlocal poisson denoising algorithm based on stochastic distances. IEEE Signal Process Lett 20(11):1010–1013. CrossRefGoogle Scholar
  6. 6.
    Bindilatti AA, Vieira MAC, Mascarenhas NDA (2018) Poisson wiener filtering with non-local weighted parameter estimation using stochastic distances. Signal Process 144:68–76. CrossRefGoogle Scholar
  7. 7.
    Bioucas-Dias JM, Figueiredo MAT (2010) Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans Image Process 19(7):1720–1730. MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale model. Simul 4(2):490–530. MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cui B, Chen X (2015) Improved hybrid filter for fiber optic gyroscope signal denoising based on EMD and forward linear prediction. Sensors Actuators A Phys 230:150–155. CrossRefGoogle Scholar
  10. 10.
    Cui BB, Chen XY, Tang XH (2017) Improved cubature Kalman filter for GNSS/INS based on transformation of posterior sigma-points error. IEEE Trans Signal Process 65(11):2975–2987. MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE TransImage Process 16(8):2080–2095. MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deering R, Kaiser JF (2005) The use of a masking signal to improve empirical mode decomposition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'05). IEEE, pp: 485–488Google Scholar
  13. 13.
    Deledalle CA, Tupin F, Denis L (2010) Poisson NL means: Unsupervised non local means for Poisson noise. IEEE Int Conf Image Process. IEEE: 801–804.
  14. 14.
    Deza MM, Deza E (2009) Encyclopedia of distances. Springer, Berlin, p 94CrossRefGoogle Scholar
  15. 15.
    Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theor 41(3):613–627MathSciNetCrossRefGoogle Scholar
  16. 16.
    Flandrin P, Gonçalves P, Rilling G (2005) EMD equivalent filter banks, from interpretation to applications. In: Dua J (ed) Hilbert–Huang transform and its applications, 2rd end. World Scientific, Singapore, pp 99–116Google Scholar
  17. 17.
    Gan L, Zhou L, You X (2014) A new GPR image de-nosing method based on BEMD. 2014 I.E. Int Conf Secur, Pattern Ana, Cybern (ICSPAC): 328–331Google Scholar
  18. 18.
    He Z, Wang Q, Shen Y, Jin J, Wang Y (2013) Multivariate gray model-based BEMD for hyperspectral image classification. Ieee T Instrum Meas 62(5):889–904. CrossRefGoogle Scholar
  19. 19.
    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N, Tung CC (1971) Liu HH (1998) the empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond A 454:903–995. CrossRefzbMATHGoogle Scholar
  20. 20.
    Jain P, Tyagi V (2016) A survey of edge-preserving image denoising methods. Inform Syst Front 18(1):159–170. CrossRefGoogle Scholar
  21. 21.
    Kabir MA, Shahnaz C (2012) Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Proces 7(5):481–489. CrossRefGoogle Scholar
  22. 22.
    Kay SM (1993) Fundamentals of statistical signal processing, volume 1: estimation theory. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  23. 23.
    Khaldi K, Boudraa AO, Komaty A (2014) Speech enhancement using empirical mode decomposition and the Teager–Kaiser energy operator. J Acoust Soc Am 135:451–459CrossRefGoogle Scholar
  24. 24.
    Komaty A, Boudraa A, Augier B, Dare-Emzivat D (2014) EMD-based filtering using similarity measure between probability density functions of IMFs. IEEE T Instrum Meas 63(1):27–34. CrossRefGoogle Scholar
  25. 25.
    Kopsinis Y, McLaughlin S (2009) Development of EMD-based Denoising methods inspired by wavelet thresholding. IEEE T Signal Proces 57(4):1351–1362. MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Labate D, Foresta FL, Occhiuto G, Morabito FC, Lay-Ekuakille A, Vergallo P (2013) Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from Single-Channel ECG: a comparison. IEEE Sensors J 13(7):2666–2674. CrossRefGoogle Scholar
  27. 27.
    Louchet C, Moisan L (2008) Total variation denoising using posterior expectation. 2008 Proc 16nd Eur Sign Process Conf (EUSIPCO). IEEE: 1–5Google Scholar
  28. 28.
    Louchet C, Moisan L (2014) Total variation denoising using iterated conditional expectation. 2014 Proc 22nd Eur Sign Process Conf (EUSIPCO). IEEE: 1592–1596Google Scholar
  29. 29.
    Maggioni M, Katkovnik V, Egiazarian K, Foi A (2013) Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans Image Process 22(1):119–133. MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Niu J, Bu X, Qian K (2017) Exploiting contrast cues for salient region detection. Multimed Tools Appl 76(8):10427–10441. CrossRefGoogle Scholar
  31. 31.
    Nunes JC, Bouaoune Y, Delechelle E (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026CrossRefGoogle Scholar
  32. 32.
    Nunes JC, Guyot S, Del Chelle E (2005) Texture analysis based on local analysis of the Bidimensional empirical mode decomposition. Mach Vision Appl 16(3):177–188. CrossRefGoogle Scholar
  33. 33.
    Omitaomu OA, Protopopescu VA, Ganguly AR (2011) Empirical mode decomposition technique with conditional mutual information for denoising operational sensor data. IEEE Sensors J 11:2565–2575CrossRefGoogle Scholar
  34. 34.
    Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D 60(1–4):259–268. MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Salmon J, Harmany Z, Deledalle CA, Willett R (2014) Poisson noise reduction with non-local PCA. J Math Imaging Vision 48(2):279–294. MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Valles-Novo R, de Jesus R-MJ, Ramirez-Cortes JM, Peregrina-Barreto H, Morales-Caporal R (2015) Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors. IEEE T Instrum Meas 64(5):1118–1128. CrossRefGoogle Scholar
  37. 37.
    Wang SH, Muhammad K, Lv YD, Sui YX, Han LX, Zhang YD (2018) Identification of alcoholism based on wavelet Renyi entropy and three-segment encoded Jaya algorithm. Complexity. MathSciNetzbMATHGoogle Scholar
  38. 38.
    Xu Y, Ahn CK, Shmaliy YS, Chen XY, Li YY (2018) Adaptive robust INS/UWB-integrated human tracking using UFIR filter bank. Measurement 123:1–7CrossRefGoogle Scholar
  39. 39.
    Yan CC, Xie HT, Chen JJ et al (2018) An effective Uyghur text detector for complex background images. IEEE Trans Multimed 14(8):1–11. CrossRefGoogle Scholar
  40. 40.
    Yan CG, Xie HT, Liu S, Yin J, Zhang YD, Dai QH (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229. CrossRefGoogle Scholar
  41. 41.
    Yan CG, Xie HT, Yang DB, Yin J, Zhang YD, Dai QH (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295. CrossRefGoogle Scholar
  42. 42.
    Yan CG, Zhang YD, Xu JZ, Dai F, Li L, Dai QH, Wu F (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576. CrossRefGoogle Scholar
  43. 43.
    Yan CG, Zhang YD, Xu JZ, Dai F, Zhang J, Dai QH, Wu F (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE T Circ Syst Vid 24(12):2077–2089. CrossRefGoogle Scholar
  44. 44.
    Yu B, Lou L, Li S, Zhang Y, Qiu W, Wu X, Wang M, Tian B (2017) Prediction of protein structural class for low-similarity sequences using Chou’s pseudo amino acid composition and wavelet denoising. J Mol Graph Model 76:260–273. CrossRefGoogle Scholar
  45. 45.
    Zao L, Coelho R, Flandrin P (2014) Speech enhancement with EMD and Hurst-based mode selection (2014) speech enhancement with EMD and Hurst-based mode selection. IEEE/ACM Trans Audio Speech Language Process 22(5):899–911. CrossRefGoogle Scholar
  46. 46.
    Zhang YD, Wu LN (2008) Improved image filter based on SPCNN. Sci Chin Inform Sci 51(12):2115–2125. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology Ministry of Education, School of Instrument Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations