A brief review on multi-task learning

Abstract

Multi-task learning (MTL), which optimizes multiple related learning tasks at the same time, has been widely used in various applications, including natural language processing, speech recognition, computer vision, multimedia data processing, biomedical imaging, socio-biological data analysis, multi-modality data analysis, etc. MTL sometimes is also referred to as joint learning, and is closely related to other machine learning subfields like multi-class learning, transfer learning, and learning with auxiliary tasks, to name a few. In this paper, we provide a brief review on this topic, discuss the motivation behind this machine learning method, compare various MTL algorithms, review MTL methods for incomplete data, and discuss its application in deep learning. We aim to provide the readers with a simple way to understand MTL without too many complicated equations, and to help the readers to apply MTL in their applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Agarwal A, Gerber S, Daume H (2010) Learning multiple tasks using manifold regularization. In: Advances in neural information processing systems. pp 46–54

  2. 2.

    Ahmed B, Thesen T, Blackmon K, Kuzniecky R, Devinsky O, Dy J, Brodley C (2016) Multi-task learning with weak class labels: leveraging ieeg to detect cortical lesions in cryptogenic epilepsy. In: Machine learning for healthcare conference. pp 115–133

  3. 3.

    Ando RK, Zhang T (2005) A framework for learning predictive structures from multiple tasks and unlabeled data. J Mach Learn Res 6(Nov):1817–1853

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Argyriou A (2015) Machine learning software. http://ttic.uchicago.edu/~argyriou/code/

  5. 5.

    Argyriou A, Evgeniou T, Pontil M (2007) Multi-task feature learning. In: Advances in neural information processing systems. vol 19, pp 41–48. MIT press

  6. 6.

    Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73(3):243–272

    Article  Google Scholar 

  7. 7.

    Argyriou A, Micchelli CA, Pontil M, Ying Y (2008) A spectral regularization framework for multi-task structure learning, nips 20 Journal Publications on Mathematics (Harmonic Analysis)

  8. 8.

    Caruana R (1998) Multitask learning. In: Learning to learn, pp 95–133. Springer

  9. 9.

    Chaichulee S, Villarroel M, Jorge J, Arteta C, Green G, McCormick K, Zisserman A, Tarassenko L (2017) Multi-task convolutional neural network for patient detection and skin segmentation in continuous non-contact vital sign monitoring. In: 2017 12th IEEE International conference on automatic face & gesture recognition (FG 2017). p 5110

  10. 10.

    Chen J, Liu J, Ye J (2012) Learning incoherent sparse and low-rank patterns from multiple tasks. ACM Trans Knowl Discov Data 5(4):22:1–22

    Article  Google Scholar 

  11. 11.

    Chen J, Tang L, Liu J, Ye J (2009) A convex formulation for learning shared structures from multiple tasks. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 137–144. ACM

  12. 12.

    Chen J, Zhou J, Ye J (2011) Integrating low-rank and group-sparse structures for robust multi-task learning. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. pp 42–50. ACM

  13. 13.

    Ciliberto C (2017) Matmtl. https://github.com/cciliber/matMTL

  14. 14.

    Ciliberto C, Mroueh Y, Poggio T (2015) Convex learning of multiple tasks and their structure. In: International conference on machine learning (ICML)

  15. 15.

    Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on machine learning. pp 160–167. ACM

  16. 16.

    Crichton G, Pyysalo S (2017) Code supporting: a neural network multi- task learning approach to biomedical named entity recognition. software, https://doi.org/10.17863/CAM.12584

  17. 17.

    Elgammal A, Lee CS (2004) Separating style and content on a nonlinear manifold. In: Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol 1, pp I–I. IEEE

  18. 18.

    Evgeniou T, Micchelli CA, Pontil M (2005) Learning multiple tasks with kernel methods. J Mach Learn Res 6(Apr):615–637

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Evgeniou T, Pontil M (2004) Regularized multi–task learning. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. pp 109–117. ACM

  20. 20.

    Fan J, Zhao T, Kuang Z, Zheng Y, Zhang J, Yu J, Peng J (2017) HD-MTL: hierarchical deep multi-task learning for large-scale visual recognition. IEEE Trans Image Process 26(4):1923–1938

    MathSciNet  Article  Google Scholar 

  21. 21.

    Fang Y, Ma Z, Zhang Z, Zhang XY, Bai X (2017) Dynamic multi-task learning with convolutional neural network. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17. pp 1668–1674. https://doi.org/10.24963/ijcai.2017/231

  22. 22.

    Fazel M (2002) Matrix rank minimization with applications. Ph.D. thesis, Department of Electrical Engineering Stanford University

  23. 23.

    Ghafoorian M, Karssemeijer N, Heskes T, van Uden IWM, Sanchez CI, Litjens G, de Leeuw FE, van Ginneken B, Marchiori E, Platel B (2017) Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Scientific Reports 7(1):5110. https://doi.org/10.1038/s41598-017-05300-5

    Article  Google Scholar 

  24. 24.

    Girshick R (2015) Fast r-cnn. In: IEEE International conference on computer vision. pp 1440–1448

  25. 25.

    Godwin J (2018) Multi-task learning in tensorflow: Part 1. https://www.kdnuggets.com/2016/07/multi-task-learning-tensorflow-part-1.html

  26. 26.

    Gong P, Ye J, Zhang Cs (2012) Multi-stage multi-task feature learning. In: Advances in neural information processing systems. pp 1988–1996

  27. 27.

    Gong P, Ye J, Zhang C (2012) Robust multi-task feature learning. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 895–903. ACM

  28. 28.

    Gong P, Zhou J, Fan W, Ye J (2014) Efficient multi-task feature learning with calibration. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 761–770. ACM

  29. 29.

    Han L, Zhang Y (2015) Learning tree structure in multi-task learning. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp 397–406. ACM

  30. 30.

    Han L, Zhang Y (2016) Multi-stage multi-task learning with reduced rank. In: AAAI. pp 1638–1644

  31. 31.

    Han L, Zhang Y, Song G, Xie K (2014) Encoding tree sparsity in multi-task learning: a probabilistic framework. In: AAAI. pp 1854–1860

  32. 32.

    Hu R, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137

    Article  Google Scholar 

  33. 33.

    Jacob L, Vert Jp, Bach FR (2009) Clustered multi-task learning: A convex formulation. In: Advances in neural information processing systems. pp 745–752

  34. 34.

    Jalali A, Ravikumar P, Sanghavi S (2013) A dirty model for multiple sparse regression. IEEE Trans Inf Theory 59(12):7947–7968

    MathSciNet  Article  Google Scholar 

  35. 35.

    Jalali A, Sanghavi S, Ruan C, Ravikumar PK (2010) A dirty model for multi-task learning. In: Lafferty JD, Williams CKI, Shawe-Taylor J, Zemel R. S, Culotta A (eds) Advances in neural information processing systems 23, pp 964-972. Curran Associates, Inc

  36. 36.

    Jebara T (2004) Multi-task feature and kernel selection for svms. In: Proceedings of the twenty-first international conference on Machine learning. p 55. ACM

  37. 37.

    Jebara T (2011) Multitask sparsity via maximum entropy discrimination. J Mach Learn Res 12(Jan):75–110

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Kim S, Xing EP (2010) Tree-guided group lasso for multi-task regression with structured sparsity. In: International conference on international conference on machine learning. pp. 543–550

  39. 39.

    Lee H, Battle A, Raina R, Ng AY (2007) Efficient sparse coding algorithms. In: Advances in neural information processing systems. pp 801–808

  40. 40.

    Lee S, Zhu J, Xing EP (2010) Adaptive multi-task lasso: with application to eqtl detection. In: Advances in neural information processing systems. pp 1306–1314

  41. 41.

    Li C, Gupta S, Rana S, Nguyen V, Venkatesh S, Ashley D, Livingston T (2016) Multiple adverse effects prediction in longitudinal cancer treatment. In: Pattern recognition (ICPR), 2016 23rd international conference on. pp 3156–3161. IEEE

  42. 42.

    Li X, Zhao L, Wei L, Yang MH, Wu F, Zhuang Y, Ling H, Wang J (2016) Deepsaliency: Multi-task deep neural network model for salient object detection. IEEE Trans Image Process 25(8):3919–3930

    MathSciNet  Article  Google Scholar 

  43. 43.

    Liu F, Wee CY, Chen H, Shen D (2014) Inter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84:466–475

    Article  Google Scholar 

  44. 44.

    Liu G, Yan Y, Song J, Sebe N (2014) Minimizing dataset bias: Discriminative multi-task sparse coding through shared subspace learning for image classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 2869–2873. IEEE

  45. 45.

    Liu H, Palatucci M, Zhang J (2009) Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 649–656. ACM

  46. 46.

    Liu J, et al. (2009) SLEP: Sparse Learning with efficient projections arizona state university

  47. 47.

    Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient l 2, 1-norm minimization. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. pp 339–348. AUAI Press

  48. 48.

    Liu J, Ye J (2009) Efficient euclidean projections in linear time. In: Proceedings of the 26th Annual International Conference on Machine Learning. pp 657–664. ACM

  49. 49.

    Liu J, Ye J (2010) Moreau-yosida regularization for grouped tree structure learning. In: Advances in neural information processing systems. pp 1459–1467

  50. 50.

    Liu M, Zhang J, Adeli E, Shen D (2017) Deep multi-task multi-channel learning for joint classification and regression of brain status. In: International conference on medical image computing and computer-assisted intervention. pp 3–11. Springer

  51. 51.

    Lounici K, Pontil M, Tsybakov AB, Van De Geer S (2009)

  52. 52.

    Lozano AC, Swirszcz G (2012) Multi-level lasso for sparse multi-task regression. In: Proceedings of the 29th International Coference on International Conference on Machine Learning. pp 595–602. Omnipress

  53. 53.

    Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: Proceedings of the 26th annual international conference on machine learning. pp 689–696. ACM

  54. 54.

    Mandal MK (2018) Multi-task learning in keras — implementation of multi-task classification loss. https://blog.manash.me/multi-task-learning-in-keras-implementation-of-multi-task-classification-loss-f1d42da5c3f6

  55. 55.

    Maurer A, Pontil M, Romera-Paredes B (2013) Sparse coding for multitask and transfer learning. In: International conference on machine learning. pp 343–351

  56. 56.

    McDonald AM, Pontil M, Stamos D (2014) Spectral k-support norm regularization. In: Advances in neural information processing systems. pp 3644–3652

  57. 57.

    Moeskops P, Wolterink JM, van der Velden BHM, Gilhuijs KGA, Leiner T, Viergever MA, Isgum I (2017) Deep learning for multi-task medical image segmentation in multiple modalities. CoRR arXiv:1704.03379

  58. 58.

    Negahban S, Wainwright MJ (2008) Joint support recovery under high-dimensional scaling: Benefits and perils of \(\ell _{1,\infty }\)-regularization. In: Proceedings of the 21st International Conference on Neural Information Processing Systems. pp 1161–1168. Curran Associates Inc

  59. 59.

    Ng A (2018) Multi-task learning. https://www.coursera.org/learn/machine-learning-projects/lecture/l9zia/multi-task-learning

  60. 60.

    Obozinski G, Taskar B, Jordan M (2006) Multi-task feature selection. Statistics Department UC Berkeley Tech Rep2

  61. 61.

    Obozinski G, Taskar B, Jordan MI (2010) Joint covariate selection and joint subspace selection for multiple classification problems. Stat Comput 20(2):231–252

    MathSciNet  Article  Google Scholar 

  62. 62.

    Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis Res 37(23):3311–3325

    Article  Google Scholar 

  63. 63.

    Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  64. 64.

    Pong TK, Tseng P, Ji S, Ye J (2010) Trace norm regularization: reformulations, algorithms, and multi-task learning. SIAM J Optim 20(6):3465–3489

    MathSciNet  Article  Google Scholar 

  65. 65.

    Ranjan R, Patel VM, Chellappa R (2017) Hyperface:A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence

  66. 66.

    Rao N, Cox C, Nowak R, Rogers TT (2013) Sparse overlapping sets lasso for multitask learning and its application to fmri analysis. In: Advances in neural information processing systems. pp 2202–2210

  67. 67.

    Romera-Paredes B, Argyriou A, Berthouze N, Pontil M (2012) Exploiting unrelated tasks in multi-task learning. In: International conference on artificial intelligence and statistics. pp 951–959

  68. 68.

    Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv:1706.05098

  69. 69.

    Samala RK, Chan HP, Hadjiiski L, Helvie MA, Richter C, Cha K (2018) Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. In: MICCAI. vol 10575. https://doi.org/10.1117/12.2293412

  70. 70.

    Seltzer ML, Droppo J (2013) Multi-task learning in deep neural networks for improved phoneme recognition. In: Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference on. pp 6965–6969. IEEE

  71. 71.

    Seraj RM (2014) Multi-task learning Internet: https://www.cs.ubc.ca/~schmidtm/MLRG/multi-task%20learning.pdf

  72. 72.

    Suo Y, Dao M, Tran T, Mousavi H, Srinivas U, Monga V (2014) Group structured dirty dictionary learning for classification. In: Image processing (ICIP), 2014 IEEE international conference on. pp 150–154. IEEE

  73. 73.

    Thung KH, et al. (2014) Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion. Neuroimage 91:386–400

    Article  Google Scholar 

  74. 74.

    Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  75. 75.

    Titsias MK, Lázaro-Gredilla M (2011) Spike and slab variational inference for multi-task and multiple kernel learning. In: Advances in neural information processing systems. pp 2339–2347

  76. 76.

    Turlach BA, Venables WN, Wright SJ (2005) Simultaneous variable selection. Technometrics 47(3):349–363

    MathSciNet  Article  Google Scholar 

  77. 77.

    Vasilescu MAO, Terzopoulos D (2002) Multilinear image analysis for facial recognition. In: Pattern recognition, 2002. Proceedings. 16th international conference on. vol 2, pp 511–514. IEEE

  78. 78.

    Vogt J, Roth V (2012) A complete analysis of the l_1, p group-lasso. arXiv:1206.4632

  79. 79.

    Vounou M, Nichols TE, Montana G, Initiative ADN, et al. (2010) Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank regression approach. Neuroimage 53(3):1147–1159

    Article  Google Scholar 

  80. 80.

    Wachinger C, Reuter M, Klein T (2018) Deepnat: Deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170:434–445. http://www.sciencedirect.com/science/article/pii/S1053811917301465

    Article  Google Scholar 

  81. 81.

    Wang H, et al. (2003) Facial expression decomposition. In: Computer vision, 2003. Proceedings. Ninth IEEE international conference on. pp 958–965. IEEE

  82. 82.

    Wang H, Nie F, Huang H, Yan J, Kim S, Risacher S, Saykin A, Shen L (2012) High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer’s disease progression prediction. In: Advances in neural information processing systems. pp 1277–1285

  83. 83.

    Wang J, Ye J (2015) Safe screening for multi-task feature learning with multiple data matrices. In: International conference on machine learning. pp 1747–1756

  84. 84.

    Wang Z, Zhu X, Adeli E, Zhu Y, Nie F, Munsell B, Wu G (2017) Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning. Med Image Anal 39:218–230

    Article  Google Scholar 

  85. 85.

    Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. Journal of Big Data 3(1):9

    Article  Google Scholar 

  86. 86.

    Wu Z, Valentini-Botinhao C, Watts O, King S (2015) Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis. In: Acoustics, speech and signal processing (ICASSP), 2015 IEEE international conference on. pp 4460–4464. IEEE

  87. 87.

    Xiang S, Yuan L, Fan W, Wang Y, Thompson PM, Ye J, Initiative ADN, et al. (2014) Bi-level multi-source learning for heterogeneous block-wise missing data. NeuroImage 102:192–206

    Article  Google Scholar 

  88. 88.

    Xin B, Kawahara Y, Wang Y, Hu L, Gao W (2016) Efficient generalized fused lasso and its applications. ACM Transactions on Intelligent Systems and Technology (TIST) 7(4):60

    Google Scholar 

  89. 89.

    Xue W, Brahm G, Pandey S, Leung S, Li S (2018) Full left ventricle quantification via deep multitask relationships learning. Med Image Anal 43:54–65. https://doi.org/10.1016/j.media.2017.09.005

    Article  Google Scholar 

  90. 90.

    Yan K, Zhang D, Xu Y (2017) Correcting instrumental variation and time-varying drift using parallel and serial multitask learning. IEEE Trans Instrum Meas 66(9):2306–2316

    Article  Google Scholar 

  91. 91.

    Yuan L, et al. (2012) Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage 61(3):622–632

    Article  Google Scholar 

  92. 92.

    Zhang C, Zhang Z (2014) Improving multiview face detection with multi-task deep convolutional neural networks. In: Applications of computer vision (WACV), 2014 IEEE winter conference on. pp 1036–1041. IEEE

  93. 93.

    Zhang D, et al. (2012) Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage 59 (2):895–907

    Article  Google Scholar 

  94. 94.

    Zhang J, Ghahramani Z, Yang Y (2006) Learning multiple related tasks using latent independent component analysis. In: Advances in neural information processing systems. pp 1585–1592

  95. 95.

    Zhang J, Ghahramani Z, Yang Y (2008) Flexible latent variable models for multi-task learning. Mach Learn 73(3):221–242

    Article  Google Scholar 

  96. 96.

    Zhang J, Liang J, Hu H (2017) Multi-view texture classification using hierarchical synthetic images. Multimedia Tools and Applications 76(16):17511–17523

    Article  Google Scholar 

  97. 97.

    Zhang J, Liu M, Shen D (2017) Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans Image Process 26(10):4753– 4764

    MathSciNet  Article  Google Scholar 

  98. 98.

    Zhang J, Liu M, Wang L, Chen S, Yuan P, Li J, Shen SGF, Tang Z, Chen KC, Xia JJ et al (2017) Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. pp 720–728. Springer

  99. 99.

    Zhang S, Li X, Zong M, Zhu X, Wang R (2017) Efficient knn classification with different numbers of nearest neighbors IEEE transactions on neural networks and learning systems

  100. 100.

    Zhang W, Li R, Zeng T, Sun Q, Kumar S, Ye J, Ji S (2015) Deep model based transfer and multi-task learning for biological image analysis. https://doi.org/10.1145/2783258.2783304

  101. 101.

    Zhang Y, Yang Q (2017) A survey on multi-task learning. arXiv:1707.08114

  102. 102.

    Zhang Y, Yeung DY (2012) A convex formulation for learning task relationships in multi-task learning. arXiv:1203.3536

  103. 103.

    Zhang Z, Luo P, Loy CC, Tang X (2014) Facial landmark detection by deep multi-task learning. In: European conference on computer vision. pp 94–108. Springer

  104. 104.

    Zheng J, Ni LM (2013) Time-dependent trajectory regression on road networks via multi-task learning. In: AAAI

  105. 105.

    Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications, pp 1–17

  106. 106.

    Zhou J, Chen J, Ye J (2011) Malsar: Multi-task learning via structural regularization. Arizona State University 21

  107. 107.

    Zhou J, Liu J, Narayan VA, Ye J (2012) Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 1095–1103. ACM

  108. 108.

    Zhou J, Yuan L, Liu J, Ye J (2011) A multi-task learning formulation for predicting disease progression. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. pp 814–822. ACM

  109. 109.

    Zhou Y, Jin R, Hoi SCH (2010) Exclusive lasso for multi-task feature selection. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. pp 988–995

  110. 110.

    Zhu X, Li X, Zhang S, Ju C, Wu X (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE transactions on neural networks and learning systems 28(6):1263–1275

    MathSciNet  Article  Google Scholar 

  111. 111.

    Zhu X, Li X, Zhang S, Xu Z, Yu L, Wang C (2017) Graph pca hashing for similarity search. IEEE Transactions on Multimedia 19(9):2033–2044

    Article  Google Scholar 

  112. 112.

    Zhu X, Suk HI, Huang H, Shen D (2016) Structured sparse low-rank regression model for brain-wide and genome-wide associations. In: International conference on medical image computing and computer-assisted intervention. pp 344–352. Springer

  113. 113.

    Zhu X, Suk HI, Huang H, Shen D (2017) Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Transactions on Big Data 3(4):405–414

    Article  Google Scholar 

  114. 114.

    Zhu X, Suk HI, Lee SW, Shen D (2016) Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans Biomed Eng 63(3):607–618

    Article  Google Scholar 

  115. 115.

    Zhu X, Zhang S, Hu R, Zhu Y et al (2017) Local and global structure preservation for robust unsupervised spectral feature selection IEEE Transactions on Knowledge and Data Engineering

  116. 116.

    Zhu Y, Kim M, Zhu X, Yan J, Kaufer D, Wu G (2017) Personalized diagnosis for alzheimers disease. In: International conference on medical image computing and computer-assisted intervention. pp 205–213. Springer

  117. 117.

    Zhu Y, Zhu X, Zhang H, Gao W, Shen D, Wu G (2016) Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In: International conference on medical image computing and computer-assisted intervention. pp 106–114. Springer

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chong-Yaw Wee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thung, K., Wee, C. A brief review on multi-task learning. Multimed Tools Appl 77, 29705–29725 (2018). https://doi.org/10.1007/s11042-018-6463-x

Download citation

Keywords

  • Multi-task learning
  • MTL
  • Transfer learning
  • Joint learning
  • Multi-class learning
  • Learning with auxiliary tasks