Multimedia Tools and Applications

, Volume 78, Issue 2, pp 1345–1373 | Cite as

A novel approach of error detection and correction for efficient energy in wireless networks

  • Salah A. AlabadyEmail author
  • Mohd Fadzli Mohd Salleh
  • Fadi Al-Turjman


This paper presents a novel linear error detection and correction approach for single and multiple bit error codes called low complexity parity check (LCPC) code. The LCPC code detects and corrects consecutive and non-consecutive bit errors. It can be used as a forward error correction scheme in the data transmission system of green wireless networks and the green Internet of Things. The proposed code improves network performance in terms of throughput, end-to-end delay, and bit error rate (BER). LCPC codes also have less complexity and lower memory requirements than Reed Solomon (RS) and low-density parity check (LDPC) codes because they have less non-zero elements in the generator matrix and the parity check matrix. Unlike LDPC codes, LCPC codes do not require reiteration in the decoding process. Various code rates of the LCPC code are proposed to reduce the complexity of the encoding and decoding process, which in turn decreases energy consumption. Simulation results show that the proposed LCPC (9, 4) code outperforms the popular LDPC codes. Compared with the LDPC (8, 4) with the decode bit flip algorithm, LCPC (9, 4) offers a coding gain of nearly 3 dB at a BER equal to 10−5.


Error correction Error detection Forward error correction LDPC Linear error detection Wireless networking 


  1. 1.
    Al-Turjman F (2017) Energy-Aware Data Delivery Framework for Safety-Oriented Mobile IoT. IEEE Sensors J 18(1):470–478CrossRefGoogle Scholar
  2. 2.
    Al-Turjman F (2017) Price-based data delivery framework for dynamic and pervasive IoT. Pervasive and Mobile Computing 42:299–316CrossRefGoogle Scholar
  3. 3.
    Al-Turjman F (2017) Cognitive routing protocol for disaster-inspired internet of things. Future Generation Computer Systems.
  4. 4.
    Al-Turjman F (2018) Optimized hexagon-based deployment for large-scale ubiquitous sensor networks. J Netw Syst Manag 26(2):255–283CrossRefGoogle Scholar
  5. 5.
    Al-Turjman FM, Imran M, Bakhsh ST (2017) Energy Efficiency Perspectives of Femtocells in Internet of Things: Recent Advances and Challenges. IEEE Access 5:26808–26818CrossRefGoogle Scholar
  6. 6.
    Ardakani M, Kschischang FR (2006) Gear-shift decoding. IEEE Trans Commun 54(7):1235–1242CrossRefGoogle Scholar
  7. 7.
    Aruna S, Anbuselvi M (2013) FFT-SPA based non-binary LDPC decoder for IEEE 802.11n standard. In: International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, India pp. 566–569.
  8. 8.
    Barnault L, Declercq D (2003) Fast decoding algorithm for LDPC over GF (2q). In: Information Theory Workshop, Paris, France, pp. 70–73.
  9. 9.
    Belean B, Nedevschi S, Borda M (2013) Application specific hardware architecture for high-throughput short-length LDPC decoders. In: IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania pp. 307–310.
  10. 10.
    Bhargava L, Bose R (2013) Novel hardware implementation of LLR-based non-binary LDPC decoders. In: IEEE National Conference on Communications (NCC), New Delhi, India, pp. 1–5.
  11. 11.
    Biroli ADG, Martina M, Masera G (2012) An LDPC decoder architecture for wireless sensor network applications. Sensors 12(2):1529–1543CrossRefGoogle Scholar
  12. 12.
    Carrasco RA, Johnston M (2009) Non-binary error control coding for wireless communication and data storage. John Wiley & Sons Ltd, United Kingdom. CrossRefGoogle Scholar
  13. 13.
    Chen C-Y, Huang Q, Chao C-C, Lin S (2010) Two low-complexity reliability-based message-passing algorithms for decoding non-binary LDPC codes. IEEE Trans Commun 58(11):3140–3147CrossRefGoogle Scholar
  14. 14.
    Chen X, Men A (2008) Reduced complexity and improved performance decoding algorithm for nonbinary LDPC codes over GF (q). In: 11th IEEE International Conference on Communication Technology(ICCT), Hangzhou, China, pp. 406–409.
  15. 15.
    Chung SY, Forney GD, Richardson TJ, Urbanke R (2001) On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun Lett 5(2):58–60CrossRefGoogle Scholar
  16. 16.
    Chun-Hao L, Chien-Yi W, Chun-Hao L, Tzi-Dar C (2008) An O(qlogq) Log-domain decoder for non-binary LDPC Over GF(q). In: IEEE Asia Pacific Conference on Circuits and Systems, (APCCAS), Macao, China, pp. 1644–1647.
  17. 17.
    Cole CA, Wilson SG, Hall EK, Giallorenzi TR (2006) Regular {4, 8} LDPC codes and their Lowerror Floors. In: IEEE Military Communications Conference (MILCOM), Washington, DC, pp. 1–7.
  18. 18.
    Davey MC, MacKay DJ (1998) Low density parity check codes over GF (q). In: Information Theory Workshop, Killarney, Ireland, pp. 70–71.
  19. 19.
    Declercq D, Fossorier M (2007) Decoding Algorithms for Nonbinary LDPC Codes Over GF(q). IEEE Trans Commun 55(4):633–643CrossRefGoogle Scholar
  20. 20.
    Gallager R (1962) Low-density parity-check codes. IRE Transactions on Information Theory 8(1):21–28MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gallager R (1963) Low density parity check codes, number 21 in Research monograph series. MIT Press, CambridgeGoogle Scholar
  22. 22.
    Han GJ, Liu XC (2010) A Unified Early Stopping Criterion for Binary and Nonbinary LDPC Codes Based on Check-Sum Variation Patterns. IEEE Commun Lett 14(11):1053–1055CrossRefGoogle Scholar
  23. 23.
    Huang J, Zhou S, Willett P (2009) Near-Shannon-limit linear-time-encodable nonbinary irregular LDPC codes. IEEE Global Telecommunications Conference (GLOBECOM), Honolulu, pp 1–6Google Scholar
  24. 24.
    Islam MR, Han YS (2011) Cooperative MIMO communication at wireless sensor network: An error correcting code approach. Sensors 11(10):9887–9903CrossRefGoogle Scholar
  25. 25.
    Jiang Y (2010) A practical guide to error-control coding using MATLAB. Artech House, LondonzbMATHGoogle Scholar
  26. 26.
    Kou Y, Lin S, Fossorier MPC (2001) Low-density parity-check codes based on finite geometries: A rediscovery and new results. IEEE Trans Inf Theory 47(7):2711–2736MathSciNetCrossRefGoogle Scholar
  27. 27.
    Leiner BM (2005) LDPC Codes–a brief Tutorial. 8(8). Stud. ID.: 53418L vol. 8(8):1-9Google Scholar
  28. 28.
    Lin J, Yan Z (2013) A decoding algorithm with reduced complexity for non-binary LDPC codes over large fields. In: IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, pp. 1688–1691.
  29. 29.
    MacKay DJC (1999) Good error-correcting codes based on very sparse matrices. IEEE Trans Inf Theory 45(2):399–431MathSciNetCrossRefGoogle Scholar
  30. 30.
    MacKay DJ, Neal RM (1996) Near Shannon limit performance of low density parity check codes. Electron Lett 32(18):1645CrossRefGoogle Scholar
  31. 31.
    Miladinovic N, Fossorier MPC (2005) Improved bit-flipping decoding of low-density parity-check codes. IEEE Trans Inf Theory 51(4):1594–1606MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ngatched TMN, Takawira F, Bossert M (2009) An Improved Decoding Algorithm for Finite-Geometry LDPC Codes. IEEE Trans Commun 57(2):302–306CrossRefGoogle Scholar
  33. 33.
    Rani S, Talwar R, Malhotra J, Ahmed SH, Sarkar M, Song H (2015) A novel scheme for an energy efficient Internet of Things based on wireless sensor networks. Sensors 15(11):28603–28626CrossRefGoogle Scholar
  34. 34.
    Richardson TJ, Shokrollahi MA, Urbanke RL (2001) Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans Inf Theory 47(2):619–637MathSciNetCrossRefGoogle Scholar
  35. 35.
    Saeedi H, Banihashemi AH (2009) Design of Irregular LDPC Codes for BIAWGN Channels with SNR Mismatch. IEEE Trans Commun 57(1):6–11CrossRefGoogle Scholar
  36. 36.
    Sassatelli L, Declercq D (2010) Nonbinary Hybrid LDPC Codes. IEEE Trans Inf Theory 56(10):5314–5334MathSciNetCrossRefGoogle Scholar
  37. 37.
    Song SM, Zbou B, Lin S, Abdel-Ghaffar K (2009) A Unified Approach to the Construction of Binary and Nonbinary Quasi-Cyclic LDPC Codes Based on Finite Fields. IEEE Trans Commun 57(1):84–93CrossRefGoogle Scholar
  38. 38.
    Tanner RM (1981) A Recursive Approach to Low Complexity Codes. IEEE Trans Inf Theory 27(5):533–547MathSciNetCrossRefGoogle Scholar
  39. 39.
    Venkateshwari P, Anbuselvi M (2012) Decoding performance of binary and non-binary LDPC codes for IEEE 802.11 n standard. In: IEEE International Conference on Recent Trends In Information Technology (ICRTIT), Chennai, India, pp. 292–296.
  40. 40.
    Voicila A, Declercq D, Verdier F, Fossorier M, Urard P (2010) Low-complexity decoding for non-binary LDPC codes in high order fields. IEEE Trans Commun 58(5):1365–1375CrossRefGoogle Scholar
  41. 41.
    Wang J, Liu X, Chi K, Zhao X (2013) Complex field network-coded cooperation based on multi-user detection in wireless networks. J Syst Eng Electron 24(2):215–221CrossRefGoogle Scholar
  42. 42.
    Xinmiao Z, Fang C (2010) Reduced-complexity check node processing for non-binary LDPC decoding. In: IEEE Workshop on Signal Processing Systems (SIPS), San Francisco, USA, pp. 70–75.
  43. 43.
    Xinmiao Z, Fang C (2011) Reduced-Complexity Decoder Architecture for Non-Binary LDPC Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 19(7):1229–1238CrossRefGoogle Scholar
  44. 44.
    Zhong H, Zhang T (2005) Block-LDPC: A practical LDPC coding system design approach. IEEE Transactions on Circuits and Systems I-Regular Papers 52(4):766–775MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Engineering, Computer Engineering DepartmentUniversity of MosulMosulIraq
  2. 2.School of Electrical and Electronic EngineeringUniversiti Sains MalaysiaNibong Tebal, Pulau PinangMalaysia
  3. 3.Department of Computer EngineeringAntalya Bilim UniversityAntalyaTurkey

Personalised recommendations