Multimedia Tools and Applications

, Volume 78, Issue 2, pp 1649–1683 | Cite as

A comparative study of recent improvements in wavelet-based image coding schemes

  • Rania BoujelbeneEmail author
  • Yousra Ben Jemaa
  • Mourad Zribi


Among the existing lossy compression methods, the transform coding is one of the most effective strategies. The Discrete Wavelet Transform (DWT) can be efficiently used in image coding applications because of its advantages as compared to the other transforms. A typical wavelet image compression system is composed of three connected components namely transformation, quantization and coding. In this paper, we review the recent improvements of each component. We present a detailed study of the recent implementation of the DWT as well as of its improvements. In addition, we describe the main principles of the wavelet-based compression schemes such as EZW, SPIHT, SPECK and EBCOT. We review the advantages and shortcomings of each of these algorithms. Also, we provide a survey of the recent improvements of the different coding schemes. Moreover, a comparative analysis of the recent enhancement and compression techniques is carried out in terms of visual quality and encoding time. We conclude by some guidelines which concern the design of an efficient codec for wavelet image compression using spline transform and improved coding scheme.


Image compression Discrete wavelet transform Spline Improved coding scheme 



  1. 1.
    Abdullah M, Subba Rao N (2013) Image compression using classical and lifting based wavelets. Int J Adv Res Comput Commun Eng 2:8Google Scholar
  2. 2.
    Ahmed NMA, Brifcani AMA (2013) A new modified embedded zerotree wavelet approach for image coding (nmezw). International Journal of Scientific and Engineering Research, vol 4Google Scholar
  3. 3.
    Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1(2):205–220CrossRefGoogle Scholar
  4. 4.
    Athmane Z (2013) Ondelettes et techniques de compression d’images numérique. Ph.D. dissertation, Université de BiskraGoogle Scholar
  5. 5.
    Averbuch AZ, Pevnyi AB, Zheludev VA (2001) Biorthogonal butterworth wavelets derived from discrete interpolatory splines. IEEE Trans Signal Process 49 (11):2682–2692MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Averbuch AZ, Zheludev VA (2004) A new family of spline-based biorthogonal wavelet transforms and their application to image compression. IEEE Trans Image Process 13(7):993–1007MathSciNetCrossRefGoogle Scholar
  7. 7.
    Averbuch AZ, Neittaanmäki P, Zheludev VA (2015) Spline and spline wavelet methods with applications to signal and image processing: Volume II: Non-Periodic Splines. Springer, SwitzerlandzbMATHGoogle Scholar
  8. 8.
    Averbuch AZ, Pevnyi AB, Zheludev VA (2001) Butterworth wavelet transforms derived from discrete interpolatory splines: Recursive implementation. Signal Process 81(11):2363–2382zbMATHCrossRefGoogle Scholar
  9. 9.
    Averbuch AZ, Zheludev VA (2002) Construction of biorthogonal discrete wavelet transforms using interpolatory splines. Appl Comput Harmon Anal 12(1):25–56MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bhokare G, Kumar U, Patil B, Gadre V (2012) Efficient coding of sparse trees using an enhanced-embedded zerotree wavelet algorithm. Signal Image Video Process 6(1):99–108CrossRefGoogle Scholar
  11. 11.
    Boujelbene R, Jemaa YB, Zribi M (2016) Toward an optimal b-spline wavelet transform for image compressionGoogle Scholar
  12. 12.
    Boujelbene R, Jemaa YB, Zribi M (2017) An efficient codec for image compression based on spline wavelet transform and improved SPIHT algorithm. In: 2017 international conference on high performance computing & simulation, HPCS 2017, Genoa, July 17-21, 2017, pp 819–825Google Scholar
  13. 13.
    Brahimi T, Laouir F, Boubchir L, Ali-Chérif A (2017) An improved wavelet-based image coder for embedded greyscale and colour image compression. AEU Int J Electron Commun 73:183–192CrossRefGoogle Scholar
  14. 14.
    Che S, Che Z, Wang H, Huang Q (2009) Image compression algorithm based on decreasing bits coding. In: Fifth international conference on information assurance and security, 2009. IAS’09, vol 1. IEEE, pp 217–220Google Scholar
  15. 15.
    Chen B, Yang Z, Huang S, Du X, Cui Z, Bhimani J, Xie X, Mi N Cyber-physical system enabled nearby traffic flow modelling for autonomous vehicles. In: Performance computing and communications conference (IPCCC), 2017 IEEE 36th international, IEEE, pp 1–6, vol 2017Google Scholar
  16. 16.
    Chithra P, Srividhya K (2013) A comparative study of wavelet coders for image compression. In: Mining intelligence and knowledge exploration. Springer, pp 260–269Google Scholar
  17. 17.
    Chui CK, Wang J-z (1992) On compactly supported spline wavelets and a duality principle. Trans Am Math Soc 330(2):903–915MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cohen A, Daubechies I, Feauveau J-C (1992) Biorthogonal bases of compactly supported wavelets. Commun Pure Appl Math 45(5):485–560MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
  20. 20.
    Daubechies I, Sweldens W (1998) Factoring wavelet transforms into lifting steps. J Fourier Anal Appl 4(3):247–269MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Davis GM, Nosratinia A (1999) Wavelet-based image coding: an overview. In: Applied and computational control, signals, and circuits. Springer, pp 369–434Google Scholar
  22. 22.
    Ding M (2015) Multilayer joint gait-pose manifolds for human gait motion modeling. IEEE Transactions on Cybernetics 45(11):2413–2424CrossRefGoogle Scholar
  23. 23.
    Ding M, Fan G (2016) Articulated and generalized gaussian kernel correlation for human pose estimation. IEEE Trans Image Process 25(2):776–789MathSciNetCrossRefGoogle Scholar
  24. 24.
    Dubey V, Mittal N, Kerhalkar SG (2013) A review on wavelet-based image compression techniques. Int J Sci Eng Technol 2(8):783–788Google Scholar
  25. 25.
    Garg A, Singh P (2017) A review on image compression techniquesGoogle Scholar
  26. 26.
    Grgic S, Grgic M, Zovko-Cihlar B (2001) Performance analysis of image compression using wavelets. IEEE Trans Ind Electron 48(3):682–695CrossRefGoogle Scholar
  27. 27.
    Hamza R, Muhammad K, Lv Z, Titouna F (2017) Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive Mob Comput 41:436–450CrossRefGoogle Scholar
  28. 28.
    Hamza R, Muhammad K, Nachiappan A, González GR (2017) Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE AccessGoogle Scholar
  29. 29.
    Hasan KK, Ngah UK, Salleh MFM (2014) Efficient hardware-based image compression schemes for wireless sensor networks: a survey. Wirel Pers Commun 77 (2):1415–1436CrossRefGoogle Scholar
  30. 30.
    Hazarathaiah A, Rao BP (2014) Medical image compression using lifting based new wavelet transforms. Int J Electr Comput Eng 4(5):741Google Scholar
  31. 31.
    Hsiang S-T (2001) Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling. In: Data compression conference, 2001. Proceedings. DCC, 2001, IEEE, pp 83–92Google Scholar
  32. 32.
    Huang K-K, Dai D-Q (2012) A new on-board image codec based on binary tree with adaptive scanning order in scan-based mode. IEEE Trans Geosci Remote Sens 50 (10):3737–3750CrossRefGoogle Scholar
  33. 33.
    Huffman DA et al. (1952) A method for the construction of minimum-redundancy codes. Proc IRE 40(9):1098–1101zbMATHCrossRefGoogle Scholar
  34. 34.
    Hussain A, Al-Fayadh A, Radi N (2018) Image compression techniques: A survey in lossless and lossy algorithms. NeurocomputingGoogle Scholar
  35. 35.
    Incerti E (2003) Compression d’image: algorithmes et standards. Vuibert InformatiqueGoogle Scholar
  36. 36.
    Islam A, Pearlman WA (1998) Embedded and efficient low-complexity hierarchical image coder. In: Electronic Imaging’99. International Society for Optics and Photonics, pp 294–305Google Scholar
  37. 37.
    Karthikeyan T, Praburaj B, Kesavapandian K (2014) Wavelet based image compression algorithms-a study. Int J Adv Comput Res 4(1):80Google Scholar
  38. 38.
    Ke-kun H (2012) Improved set partitioning in hierarchical trees algorithm based on adaptive coding order. J Comput Appl 32(3):732–735Google Scholar
  39. 39.
    Ke-kun H (2012) Improved spiht algorithm based on binary tree. Comput Eng 15:063Google Scholar
  40. 40.
    Kotteri KA, Barua S, Bell AE, Carletta J (2005) A comparison of hardware implementations of the biorthogonal 9/7 dwt: convolution versus lifting. IEEE Trans Circ Syst Express Briefs 52(5):256–260CrossRefGoogle Scholar
  41. 41.
    Langdon G, Gulati A, Seiler E (1992) On the jpeg model for lossless image compression. In: Data compression conference, 1992. DCC’92, IEEE, pp 172–180Google Scholar
  42. 42.
    Liu H, Huang K-K (2016) Zerotree wavelet image compression with weighted sub-block-trees and adaptive coding order. Int J Wavelets Multiresolution Inf Process 14(4):1650021MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Mallat S (1999) A wavelet tour of signal processing. Academic Press, CambridgezbMATHGoogle Scholar
  44. 44.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693zbMATHCrossRefGoogle Scholar
  45. 45.
    Munteanu A, Cornelis J, Van der Auwera G, Cristea P (1999) Wavelet image compression-the quadtree coding approach. IEEE Trans Inf Technol Biomed 3 (3):176–185CrossRefGoogle Scholar
  46. 46.
    Ouafi A, Ahmed AT, Baarir Z, Zitouni A (2008) A modified embedded zerotree wavelet (mezw) algorithm for image compression. J Math Imaging Vision 30 (3):298–307CrossRefGoogle Scholar
  47. 47.
    Patel A, Gupta S (2017) Analysis of wavelet based image compression technique: A surveyGoogle Scholar
  48. 48.
    Pennebaker WB, Mitchell JL (1992) JPEG: Still Image data compression standard. Springer Science & Business Media, Verlag USGoogle Scholar
  49. 49.
    Rani N, Bishnoi S (2014) Comparative analysis of image compression using dct and dwt transforms. Int J Comput Sci Mobile Comput 3:990–996Google Scholar
  50. 50.
    Rao K (1990) Yip, discrete cosine transform, algorithm, advantage and applications. Academic, New YorkGoogle Scholar
  51. 51.
    Rasool U, Mairaj S, Nazeer T, Ahmed S Wavelet based image compression techniques: Comparative analysis and performance evaluationGoogle Scholar
  52. 52.
    Rawat P, Nautiyal A, Chamoli S (2015) Performance evaluation of gray scale image using ezw and spiht coding schemes. Int J Comput Appl 15:124Google Scholar
  53. 53.
    Rawat S, Verma AK (2017) Survey paper on image compression techniquesGoogle Scholar
  54. 54.
    Rehna V, Kumar M (2012) Wavelet based image coding schemes: A recent survey. arXiv:1209.2515
  55. 55.
    Rema N, Oommen BA, Mythili P (2015) Image compression using spiht with modified spatial orientation trees. Procedia Comput Sci 46:1732–1738CrossRefGoogle Scholar
  56. 56.
    Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circ Syst Video Technol 6(3):243–250CrossRefGoogle Scholar
  57. 57.
    Saroya N, Kaur P (2014) Analysis of image compression algorithm using dct and dwt transforms. Int J Adv Res Comput Sci Softw Eng 4(2):897–900Google Scholar
  58. 58.
    Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462zbMATHCrossRefGoogle Scholar
  59. 59.
    Singh P, Singh P (2011) Design and implementation of ezw & spiht image coder for virtual images. Int J Comput Sci Secur (IJCSS) 5(5):433Google Scholar
  60. 60.
    Singh R, Srivastava V (2012) Performance comparison of arithmetic and huffman coder applied to ezw codec. In: 2012 2nd international conference on power control and embedded systemsGoogle Scholar
  61. 61.
    Suruliandi A, Raja S (2015) Empirical evaluation of ezw and other encoding techniques in the wavelet-based image compression domain. Int J Wavelets Multiresolution Inf Process 13(2):1550012MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3(2):186–200MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Taubman D (2000) High performance scalable image compression with ebcot. IEEE Trans Image Process 9(7):1158–1170CrossRefGoogle Scholar
  64. 64.
    Unser M, Aldroubi A, Eden M (1993) A family of polynomial spline wavelet transforms. Signal Process 30(2):141–162zbMATHCrossRefGoogle Scholar
  65. 65.
    Vaidyanathan PP, Vrcelj B (2001) Biorthogonal partners and applications. IEEE Trans Signal Process 49(5):1013–1027MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Wang J, Cui Y (2012) Coefficient statistic based modified spiht image compression algorithm. In: Advances in computer science and information engineering. Springer, pp 595–600Google Scholar
  67. 67.
    Wang W, Wang G, Zhang T (2009) A new quantization improvement of spiht for wavelet image coding. In: Advances in neural networks–ISNN 2009, Springer, pp 921–927Google Scholar
  68. 68.
    Witten IH, Neal RM, Cleary JG (1987) Arithmetic coding for data compression. Commun ACM 30(6):520–540CrossRefGoogle Scholar
  69. 69.
    Wu X (1997) Lossless compression of continuous-tone images via context selection, quantization, and modeling. IEEE Trans Image Process 6(5):656–664CrossRefGoogle Scholar
  70. 70.
    Xie X, Liu S, Yang C, Yang Z, Xu J, Zhai X (2017) The application of smart materials in tactile actuators for tactile information delivery. arXiv:1708.07077
  71. 71.
    Yan C, Xie H, Liu S, Yin J, Zhang Y, Dai Q (2018) Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229CrossRefGoogle Scholar
  72. 72.
    Yan C, Xie H, Yang D, Yin J, Zhang Y, Dai Q (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295CrossRefGoogle Scholar
  73. 73.
    Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576CrossRefGoogle Scholar
  74. 74.
    Yan C, Zhang Y, Xu J, Dai F, Zhang J, Dai Q, Wu F (2014) Efficient parallel framework for hevc motion estimation on many-core processors. IEEE Trans Circ Syst Video Technol 24(12):2077–2089CrossRefGoogle Scholar
  75. 75.
    Zettler WR, Huffman JC, Linden DC (1990) Application of compactly supported wavelets to image compression: In: Electronic Imaging’90, Santa Clara, 11-16 Feb’92. International Society for Optics and Photonics, pp 150–160Google Scholar
  76. 76.
    Zhang H, Zhang X, Cao S (2000) Analysis and evaluation of some image compression techniques. In: The fourth international conference/exhibition on high performance computing in the Asia-Pacific region, 2000. Proceedings, vol 2. IEEE, pp 799–803Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.U2S LaboratoryUniversity of Tunis-El ManarTunisTunisia
  2. 2.LISIC LaboratoryUniversity of Lille North of France (ULCO)CalaisFrance

Personalised recommendations