Skip to main content
Log in

Visual tracking via robust multi-task multi-feature joint sparse representation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multiple feature object representation has been proved as a robust approach for visual tracking. Different types of situations such as occlusion, rotation and illumination may occur during tracking, especially long sequences. Robust tracking could be obtained as multiple features could complement each other. In this paper, we cast visual tracking as a novel multi-task sparse learning problem and exploit various types of visual features, such as intensity, color, texture and edge, where each feature can be sparsely represented by a linear combination of atoms from an adaptive feature template. We use an on-line feature selection mechanism based on the two-class variance ratio measure, applied to log likelihood distributions computed with respect to a given feature from samples of object and background pixels. The proposed method is integrated in a particle filtering framework. We jointly consider the underlying relationship across different particles, and tackle it in a unified robust multi-task formulation. In addition, to capture the frequently emerging outlier tasks, we make fully use of a decomposition model which enables a more robust and accurate approximation. We show that the proposed model can be efficiently solved using the Alternating direction method of multipliers (ADMM) with a small number of closed-form updates. Four types of features are implemented and tested on numerous benchmark video sequences. Both the qualitative and quantitative results demonstrate the superior performance of the proposed approach compared to 9 state of-the-art trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  2. Bao C, Wu Y, Ling H, Ji H (2012) Real Time Robust L1 Tracker using accelerated proximal gradient approach. In: IEEE conference on computer vision and pattern recognition (CVPR), Rhode Island

  3. Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016) Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1401–1409

  4. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers, vol 3, pp 1–122

  5. Chen D, Yang J (2007) Robust object tracking via online spatial bias appearance model learning. IEEE Trans PAMI 29:2157–2169

    Article  Google Scholar 

  6. Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. TPAMI 27(10):1631–1643

    Article  Google Scholar 

  7. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of nonrigid objects using mean shift. In: Proceedings of the IEEE conference on computer vision and pattern recognition, vol 2, pp 142–149

  8. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceedings of IEEE conference on CVPR, pp 1063–6919

  9. Danelljan M, Hager G, Khan FS, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: Proceedings of the British machine vision conference BMVC

  10. Danelljan M, Khan FS, Felsberg M, van de Weijer J (2014) Adaptive color attributes for real-time visual tracking. In: IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1090–1097

  11. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2010) The PASCAL visual object classes challenge 2010 (VOC2010) results

  12. Han Z, Ye Q, Jiao J (2011) Combined feature evaluation for adaptive visual object tracking. Comput Vis Image Underst 115(1):69–80

    Article  Google Scholar 

  13. Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. TPAMI

  14. Hong Z, Mei X, Prokhorov D, Tao D (2013) Tracking via robust multi-task multi-view joint sparse representation. In: Proceedings of the IEEE international conference on computer vision, pp 649–656

  15. Kalal Z, Mikolajczyk K, Matas J (2011) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  16. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  17. Kwon J, Lee KM (2010) Visual tracking decomposition. In: CVPR, pp 1269–1276

  18. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration. Springer, pp 254–265

  19. Ma Chao, Huang J-B, Yang X, Yang M-H (2015) Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE international conference on computer vision, pp 3074–3082

  20. Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  21. Moreno-Noguer F, Sanfeliu A, Samaras D (2008) Dependent multiple cue integration for robust tracking. TPAMI 30(4):670–685

    Article  Google Scholar 

  22. Mueller M, Smith N, Ghanem B (2017) Context-aware correlation filter tracking. In: Proceedings of the IEEE conference computer vision and pattern recognition (CVPR), pp 1396–1404

  23. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. TPAMI 24(7):971–987

    Article  Google Scholar 

  24. Qi Y, Zhang S, Qin L, Yao H, Huang Q, Lim J, Yang M-H (2016) Hedged deep tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4303–4311

  25. Ross D, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  26. Smeulder AWM, Chu DM, Cucchiara R, Calderara S, Deghghan A, Shah M (2013) Visual tracking: an experimental survey. In: IEEE transaction on pattern analysis and machine intelligence

  27. Valmadre J, Bertinetto L, Henriques J, Vedaldi A, Torr PHS (2017) End-to-end representation learning for correlation filter based tracking. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 5000–5008

  28. Wang N, Yeung D-Y (2013) Learning a deep compact image representation for visual tracking. In: Proceedings of twenty-seventh annual conference on neural information processing systems (NIPS), Lake Tahoe, 5–10 December

  29. Wang J, Chen X, Gao W (2005) Online selecting discriminative tracking features using particle filter. In: Proceedings of IEEE conference on CVPR, pp 1037–1042

  30. Wang X, Han TX, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. In: 2009 IEEE 12th international conference on computer vision. IEEE

  31. Wang S, Lu H, Yang F, Yang M-H (2011) Superpixel tracking. In: Proceedings of the IEEE conference on computer vision, pp 1323–1330

  32. Wang D, Lu H, Yang M-H (2013) Least soft-thresold squares tracking. In: CVPR, pp 2371–2378

  33. Wang L, Ouyang W, Wang X, Lu H (2016) Stct: sequentially training convolutional networks for visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1373–1381

  34. Wang Y, Luo X, Hu S (2016) Visual tracking via robust multi-task multi-feature joint sparse representation. In: IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE

  35. Wu Y, Lim J, Yang MH (2013) Online object tracking: a benchmark. In: IEEe conference on computer vision and pattern recognition (CVPR). IEEE, pp 2411–2418

  36. Xiao Z, Lu H, Wang D (2014) L2-RLS-based object tracking. IEEE Trans Circ Syst Video Technol 24(8):1301–1309

    Article  Google Scholar 

  37. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):13–32

    Article  Google Scholar 

  38. Yuan X-T, Yan S (2010) Visual classification with multi-task joint sparse representation. In: CVPR, pp 3493–3500

  39. Zhang K, Song H (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46(1):397–411

    Article  Google Scholar 

  40. Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking, vol 3, Florence, pp 864–877

  41. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Low-rank sparse learning for robust visual tracking. In: Computer Vision–ECCV. Springer, Berlin, pp 470–484

  42. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Robust visual tracking via multi-task sparse learning. In: IEEE conference on computer vision and pattern recognition, pp 1–8

  43. Zhang T, Xu C, Yang M-H (2017) Multi-task correlation particle filter for robust object tracking. Proc IEEE Conf Comput Vis Pattern Recognit 1(2):3

    Google Scholar 

Download references

Acknowledgments

This paper is jointly supported by the National Natural Science Foundation of China No. 61374161, China Aviation Science Foundation 20142057006. Part of the research conducted when the first author were in CRCV at UCF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Luo, X., Ding, L. et al. Visual tracking via robust multi-task multi-feature joint sparse representation. Multimed Tools Appl 77, 31447–31467 (2018). https://doi.org/10.1007/s11042-018-6198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6198-8

Keywords

Navigation