Discriminative self-adapted locality-sensitive sparse representation for video semantic analysis

  • Junqi Liu
  • Jianping Gou
  • Yongzhao Zhan
  • Qirong Mao
Article
  • 17 Downloads

Abstract

In recent years, sparse representation has attracted a blooming interest in the areas of pattern recognition, image processing, and computer vision. In video semantic analysis, the diversity of scene for the same semantic content in video always exists. Using dictionary learning in sparse representation can capture the latent relationship among the original diverse video semantic features. To enhance the discriminative ability of diverse video semantic features, the method of discriminative self-adapted locality-sensitive sparse representation for video semantic analysis is proposed. In the proposed method, a discriminative self-adaptive locality-sensitive dictionary learning method (DSALSDL) is designed. In DSALSDL, a self-adaptive local adapter is built to join in the process of dictionary learning for sparse representation, so as to obtain the potential information of the video data. Furthermore, in the self-adaptive locality-sensitive sparse representation, a discriminant loss function based on class-specific representation coefficients is imposed to further learn appropriate dictionary for video semantic analysis. Using the self-adaptive local adapter and discriminant loss function in dictionary learning, the sparse representation is exploited for video semantic concept detection. The proposed method is evaluated on the related video databases in comparison with existing relative sparse representation methods. Experimental results show that our method can improve the power of discrimination of video features and improve the accuracy of video semantic concept detection.

Keywords

Self-adaptive Locality-sensitive Dictionary learning Sparse representation Video semantic concept detection 

Notes

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61672268, Grant Nos. 61502208), Primary Research & Development Plan of Jiangsu Province of China (Grant No. BE2015137) and Natural Science Foundation of Jiangsu Province of China (Grant No. BK20150522).

References

  1. 1.
    Aharon M, Elad M, Bruckstein A (2006) R m k-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322CrossRefMATHGoogle Scholar
  2. 2.
    Chang X, Yang Y (2017) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Trans Neural Netw Learn Syst 28(10):2294–2305MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197CrossRefGoogle Scholar
  6. 6.
    Chang X, Yu YL, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632CrossRefGoogle Scholar
  7. 7.
    Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43(4):996–1002CrossRefGoogle Scholar
  8. 8.
    Dai S, Zhan Y, Mao Q, Zhang S (2013) A video semantic analysis method based on kernel discriminative sparse representation and weighted knn. In: Green Computing and Communications, pp 879–886Google Scholar
  9. 9.
    Fergus R, Perona P, Zisserman A (2007) Weakly supervised scale-invariant learning of models for visual recognition. Int J Comput Vis 71(3):273–303CrossRefGoogle Scholar
  10. 10.
    Geisler G, Song YX The Open Video Project. https://open-video.org/index.php
  11. 11.
    Khan HA, Helal AA, Ahmed KI (2014) Handwritten bangla digit recognition using sparse representation classifier. In: International Conference on Informatics, Electronics and Vision, pp 1–6Google Scholar
  12. 12.
    Kreutzdelgado K, Murray JF, Rao BD, Engan K, Lee TW, Sejnowski TJ (2014) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396CrossRefMATHGoogle Scholar
  13. 13.
    Li H, Liu F (2010) Image denoising via sparse and redundant representations over learned dictionaries in wavelet domain. In: International Conference on Image and Graphics, pp 754–758Google Scholar
  14. 14.
    Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24(12):5343–5355MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li Z, Tang J (2015) Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Trans Multimed 17(11):1989–1999CrossRefGoogle Scholar
  16. 16.
    Li Z, Tang J (2017) Weakly supervised deep matrix factorization for social image understanding. IEEE Press, PiscatawayGoogle Scholar
  17. 17.
    Li N, Zhan Y, Gou J (2014) A dictionary learning method based on self-adaptive locality-sensitive sparse representation. In: International Conference on Human Centered Computing, pp 115–126Google Scholar
  18. 18.
    Li T, Tang J, Xu J (2015) A predictive scheduling framework for fast and distributed stream data processing. In: IEEE International Conference on Big Data, pp 333–338Google Scholar
  19. 19.
    Li Z, Liu J, Tang J, Lu H (2015) Robust structured subspace learning for data representation. IEEE Trans Pattern Anal Mach Intell 37(10):2085–2098CrossRefGoogle Scholar
  20. 20.
    Li T, Tang J, Xu J (2016) Performance modeling and predictive scheduling for distributed stream data processing. IEEE Trans Big Data PP(99):1–1Google Scholar
  21. 21.
    Li Z, Tang J, He X (2017) Robust structured nonnegative matrix factorization for image representation. IEEE Trans Neural Netw Learn Syst PP(99):1–14Google Scholar
  22. 22.
    Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. In: International Conference on Pattern Recognition, pp 898–901Google Scholar
  23. 23.
    Liu W, Yu Z, Lu L, Wen Y, Li H, Zou Y (2015) Kcrc-lcd: discriminative kernel collaborative representation with locality constrained dictionary for visual categorization. Pattern Recogn 48(10):3076–3092CrossRefGoogle Scholar
  24. 24.
    Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: International Conference on Artificial Intelligence, pp 1617–1623Google Scholar
  25. 25.
    Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. In: Thirtieth AAAI Conference on Artificial Intelligence, pp 1266–1272Google Scholar
  26. 26.
    Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115CrossRefGoogle Scholar
  27. 27.
    Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: Thirtieth AAAI Conference on Artificial Intelligence, pp 201–207Google Scholar
  28. 28.
    Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. In: International Joint Conference on Artificial IntelligenceGoogle Scholar
  29. 29.
    Mukundan R (2007) Radial tchebichef invariants for pattern recognition. In: Tencon 2005 IEEE Region, pp 1–6Google Scholar
  30. 30.
    Tosic I, Frossard P (2011) Dictionary learning. IEEE Signal Proc Mag 28(2):27–38CrossRefMATHGoogle Scholar
  31. 31.
  32. 32.
    Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Computer Vision and Pattern Recognition, pp 3360–3367Google Scholar
  33. 33.
    Wang YD, Yan QY, Li KF (2011) Hand vein recognition based on multi-scale lbp and wavelet. In: International Conference on Wavelet Analysis and Pattern Recognition, pp 214–218Google Scholar
  34. 34.
    Wang B, Wang Y, Xiao W, Wang W, Zhang M (2012) Human action recognition based on discriminative sparse coding video representation. Robot 34(6):745CrossRefGoogle Scholar
  35. 35.
    Wang JGM, Zhan Y, Mao Q (2015) Locality-sensitive discriminant sparse representation for video semantic analysis. Comput Sci 42:313–318Google Scholar
  36. 36.
    Wei CP, Chao YW, Yeh YR, Wang YCF (2013) Locality-sensitive dictionary learning for sparse representation based classification. Pattern Recogn 46(5):1277–1287CrossRefMATHGoogle Scholar
  37. 37.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31 (2):210–227CrossRefGoogle Scholar
  38. 38.
    Xu Y, Zuo W, Fan Z (2012) Supervised sparse representation method with a heuristic strategy and face recognition experiments. Neurocomputing 79(1):125–131CrossRefGoogle Scholar
  39. 39.
    Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification, pp 1794–1801Google Scholar
  40. 40.
    Yang M, Zhang L, Feng X, Zhang D (2012) Fisher discrimination dictionary learning for sparse representation. In: IEEE International Conference on Computer Vision, pp 543–550Google Scholar
  41. 41.
  42. 42.
    Zhan Y, Wang M, Ke J (2012) Video key-frame extraction using ordered samples clustering based on artificial immune. J Jiangsu University 33(2):199–204Google Scholar
  43. 43.
    Zhan Y, Liu J, Gou J, Wang M (2016) A video semantic detection method based on locality-sensitive discriminant sparse representation and weighted knn. J Visual Commun Image Representation 41:65–73CrossRefGoogle Scholar
  44. 44.
    Zhang H, Zhang Y, Huang T (2013) Pose-robust face recognition via sparse representation. Pattern Recogn 46(5):1511–1521CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Junqi Liu
    • 1
  • Jianping Gou
    • 1
  • Yongzhao Zhan
    • 1
  • Qirong Mao
    • 1
  1. 1.School of Computer Science and Telecommunication EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations