Local complexity based adaptive embedding mechanism for reversible data hiding in digital images

  • Fang CaoEmail author
  • Bowen AnEmail author
  • Heng Yao
  • Zhenjun Tang


In this paper, a reversible data hiding scheme for digital images with high hiding capacity is proposed. Original image is segmented into smooth and rough regions based on local complexity. In order to achieve higher hiding capacity, we embed three bits into each pixel belonging to smooth region with lower local complexity and one bit is embedded into each pixel of rough region, which can effectively exploit more redundancy during data embedding compared with conventional methods of prediction error expansion (PEE). Additionally, the pixel selection mechanism is applied to reduce the number of shifted pixels, which leads to high visual quality of stego image. Experimental results show that, our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.


Reversible data hiding Prediction error expansion Local complexity Adaptive embedding Hiding capacity Image quality 



This work was supported by the National Natural Science Foundation of China (61171126, 61272452, 61702332, U1636101, 61562007), Ministry of Transport and Applied Basic Research Projects (2014329810060), and Science & Technology Program of Shanghai Maritime University (20130479), Natural Science Foundation of Guangxi (2017GXNSFAA198222), and Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (MIMS15-03).


  1. 1.
    Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266CrossRefGoogle Scholar
  2. 2.
    Fallahpour M (2008) Reversible image data hiding based on gradient adjusted prediction. IEICE Electron Express 5(20):870–876CrossRefGoogle Scholar
  3. 3.
    Hong W, Chen TS, Wu HY (2012) An improved reversible data hiding in encrypted images using side match. IEEE Signal Process Lett 19(4):199–202CrossRefGoogle Scholar
  4. 4.
    Hong W, Chen TS, Chen J (2015) Reversible data hiding using Delaunay triangulation and selective embedment. Inf Sci 308:140–154CrossRefGoogle Scholar
  5. 5.
    Hong W, Zheng S, Chen TS, Huang CC (2016) Reversible data hiding in block truncation coding compressed images using quantization level swapping and shifting. KSII Trans Internet Inf Syst 10(6):2817–2834Google Scholar
  6. 6.
    Hu Y, Lee HK, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  7. 7.
    Li XL, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Li XL, Li B, Yang B, Zeng TY (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6):2181–2191MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li XL, Zhang WM, Gui XL, Yang B (2015) Efficient reversible data hiding based on multiple histograms modification. IEEE Trans Inf Forensics Secur 10(9):2016–2027CrossRefGoogle Scholar
  10. 10.
    Liu JF, Tian YG, Han T, Wang JC, Luo XY (2016) Stego key searching for LSB steganography on JPEG decompressed image. SCIENCE CHINA Inf Sci 59(3):1–15Google Scholar
  11. 11.
    Lu TC, Chi LP, Wu CH, Chang HP (2017) Reversible data hiding in dual stego-images using frequency-based encoding strategy. Multimedia Tools and Applications 76(22):23903–23929CrossRefGoogle Scholar
  12. 12.
    Luo L, Chen Z, Chen M, Zeng X, Xiong Z (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Secur 5(1):187–193CrossRefGoogle Scholar
  13. 13.
    Ma YY, Luo XY, Li XL, Bao ZK, Zhang Y (2018) Selection of rich model Steganalysis features based on decision rough set α-positive region reduction. IEEE Trans Circuits Syst Video Technol.
  14. 14.
    Ni ZC, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  15. 15.
    Ou B, Li XL, Zhao Y, Ni RR, Shi YQ (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Qian ZX, Zhang XP (2016) Reversible data hiding in encrypted image with distributed source encoding. IEEE Trans Circuits Syst Video Technol 26(4):636–646CrossRefGoogle Scholar
  17. 17.
    Qian ZX, Zhang XP, Wang SZ (2014) Reversible data hiding in encrypted JPEG bitstream. IEEE Trans Multimed 16(5):1486–1491CrossRefGoogle Scholar
  18. 18.
    Qin C, Zhang XP (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164CrossRefGoogle Scholar
  19. 19.
    Qin C, Chang CC, Huang YH, Liao LT (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23(7):1109–1118CrossRefGoogle Scholar
  20. 20.
    Qin C, Chang CC, Chiu YP (2014) A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans Image Process 23(3):969–978MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Qin C, Chang CC, Hsu TJ (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimed Tools Appl 74(15):5861–5872CrossRefGoogle Scholar
  22. 22.
    Qin C, Chen XQ, Ye DP, Wang JW, Sun XM (2016) A novel image hashing scheme with perceptual robustness using block truncation coding. Inf Sci 361–362:84–99CrossRefGoogle Scholar
  23. 23.
    Qin C, Ji P, Zhang XP, Dong J, Wang JW (2017) Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Process 138:280–293CrossRefGoogle Scholar
  24. 24.
    Qin C, Ji P, Chang CC, Dong J, Sun XM (2018) Non-uniform watermark sharing based on optimal iterative BTC for image tampering recovery. IEEE Multimedia.
  25. 25.
    Qin C, Chen XQ, Luo XY, Zhang XP, Sun XM (2018) Perceptual image hashing via dual-cross pattern encoding and salient structure detection. Inf Sci 423:284–302MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sachnev V, Kim HJ, Nam J, Suresh S, Shi Y (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19:989–999CrossRefGoogle Scholar
  27. 27.
    Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910CrossRefGoogle Scholar
  28. 28.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896CrossRefGoogle Scholar
  30. 30.
    Zhang XP (2012) Separable reversible data hiding in encrypted image. IEEE Trans Inf Forensics Secur 7(2):526–532Google Scholar
  31. 31.
    Zhang Y, Qin C, Zhang WM, Liu FL, Luo XY (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.School of Optical-Electrical and Computer EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  3. 3.Guangxi Key Lab of Multi-Source Information Mining & SecurityGuangxi Normal UniversityGuilinChina

Personalised recommendations