Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 20, pp 27471–27489 | Cite as

Face description using electric virtual binary pattern (EVBP): application to face recognition

  • Abdellatif Dahmouni
  • Karim El Moutaouakil
  • Khalid Satori
Article
  • 70 Downloads

Abstract

In this paper, we present a novel efficient face description method called Electric Virtual Binary Pattern (EVBP). The main idea of EVBP descriptor is to combine Local Binary Pattern (LBP) and our new Model based on the Virtual Electric Field. This model consider the neighborhood of each pixel as a grid of virtual electric charges that are electrostatically balanced. Then, we apply the LBP principle for this neighborhood to generate the new EVBP pixel representation. Based on the four trivial space directions, this representation is computed using the corresponding four electrical interactions. Moreover, the spatially enhanced Local Binary Pattern Histogram (eLBPH) algorithm is employed to extract features. Therefore, the proposed EVBP descriptor led to reduce the features vector size by 93.75%. Consequently, we moved from 255 bin-histograms for LBP to 16 bin-histograms for EVBP descriptor. Extensive experiments were carried on relevant databases have proved the effectiveness of the proposed approach.

Keywords

LBP Virtual electric field Fictitious charges eLBPH EVBP 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 28(12):2037–2041CrossRefzbMATHGoogle Scholar
  5. 5.
    Albiol A, Monzo D, Martin A, Sastre J, Albiol A (2008) Face recognition using HOG-EBGM. Pattern Recogn Lett 29(10):1537–1543CrossRefGoogle Scholar
  6. 6.
    Bay H, Ess A, Tuytelaars T, V Gool L (2008) Surf: Speeded up robust features. Computer Vision Image Understanding 110(3):346–359CrossRefGoogle Scholar
  7. 7.
    Dahmouni A, Elmoutaouakil K, Satori K (2016). Face recognition using local binary probabilistic pattern (LBPP) and 2D-DCT frequency decomposition. In 13th (CGiV) IEEE, 73–77Google Scholar
  8. 8.
    Dahmouni A, Elmoutaouakil K, Satori K (2016) Robust face recognition using local gradient probabilistic pattern (LGPP). Springer International Publishing 380(29):277–286Google Scholar
  9. 9.
    Deniz O, Castrillon M, Hernandez M (2003) Face recognition using independent component analysis and support vector machines. Pattern Recogn Lett 24:2153–2157CrossRefzbMATHGoogle Scholar
  10. 10.
    Dornaika F. (Ed.). (2016). Advances in face image analysis: theory and applications. Bentham Science PublishersGoogle Scholar
  11. 11.
    Forczmański P, Łabȩdź P (2015). Improving the recognition of occluded faces by means of two-dimensional orthogonal projection into local subspaces. In Image Analysis and Recognition, Springer International Publishing, 229–238Google Scholar
  12. 12.
    Geng C, Jiang X (2011) Face recognition based on the multi-scale local image structures. Pattern Recogniton 44(10–11):2565–2575CrossRefGoogle Scholar
  13. 13.
    Ghaforiyan H, Emadi M (2016) Human face recognition under pose variation with fusion geometric methods. international academic journal of science and Engineering 3(1):1–10Google Scholar
  14. 14.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Houam L, Hafiane A, Boukrouche A, Lespessailles E, Jennane R (2014) One-dimensional local binary pattern for bone texture characterization. Pattern Analysis and Applicat 17(1):179–193MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang W, Yin H (2012) On nonlinear dimensionality reduction for face recognition. Image Vis Comput 30(4):355–366CrossRefGoogle Scholar
  17. 17.
    HUANG S, YANG D, ZHOU J, Zhang X (2015) Graph regularized linear discriminant analysis and its generalization. Pattern Anal Applic 18(3):639–650MathSciNetCrossRefGoogle Scholar
  18. 18.
    Huang ZH, Li WJ, Shang J, Wang J, Zhang T (2015) Non-uniform patch based face recognition via 2DDWT. Image Vis Comput 37:12–19CrossRefGoogle Scholar
  19. 19.
    Huang ZH, Li WJ, Wang J, Zhang T (2015) Face recognition based on pixel-level and feature-level fusion of the top-level’s wavelet sub-bands. Information Fusion 22:95–104CrossRefGoogle Scholar
  20. 20.
    Jabid T, Kabir MH, Chae O (2010) Local directional pattern (LDP) for face recognition. In Consumer Electronics (ICCE), IEEE, 329–330Google Scholar
  21. 21.
    Jain AK, Li SZ (2011) Handbook of face recognition. Springer, New YorkzbMATHGoogle Scholar
  22. 22.
    Jian Y, Zhang D, Frangi A, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26:131–137CrossRefGoogle Scholar
  23. 23.
    Jun B, Kim D (2012) Robust face detection using local gradient patterns and evidence accumulation. Pattern Recogn 45(9):3304–3316CrossRefGoogle Scholar
  24. 24.
    Kuncheva LI (2004). Combining pattern classifiers methods and algorithms, John Wiley & SonsGoogle Scholar
  25. 25.
    Lin G, Fan G, Kang X, Zhang E, Yu L (2016) Heterogeneous feature structure fusion for classification. Pattern Recogn 53:1–11CrossRefGoogle Scholar
  26. 26.
    Liu F, Tang Z, Tang J (2013) WLBP: weber local binary pattern for local image description. Neurocomputing 120:325–335CrossRefGoogle Scholar
  27. 27.
    Lu J, Tan Y (2010) Regularized locality preserving projections and its extensions for face recognition. IEEE Trans Syst ManCybern PartB: Cybern 40(3):958–963MathSciNetCrossRefGoogle Scholar
  28. 28.
    Martinez A, Benavente R (1998). AR face database. CVC technical report 24 Visited April 2016Google Scholar
  29. 29.
    Mashhoori A, Jahromi MZ (2013) Block-wise two-directional 2DPCA with ensemble learning for face recognition. Neurocomputing 108:111–117CrossRefGoogle Scholar
  30. 30.
    Mehta R, Egiazarian K (2016) Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn Lett 71:16–22CrossRefGoogle Scholar
  31. 31.
    Nguyen HT, Caplier A. (2013). Elliptical local binary patterns for face recognition. In Computer Vision-ACCV 2012 Workshops (pp. 85-96). Springer Berlin Heidelberg, Elliptical Local Binary Patterns for Face RecognitionGoogle Scholar
  32. 32.
    Ojala T, Pietikäinen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Analysis and Machine Intelligence 24(7):971–987CrossRefzbMATHGoogle Scholar
  33. 33.
    Pal A, Das N, Sarkar S, Gangopadhyay D, Nasipuri M (2013). A new rotation invariant weber local descriptor for recognition of skin diseases. Pattern Recog and machine Intelligence, 355–360Google Scholar
  34. 34.
    POWERS, D. M (2011) Evaluation: from precision, recall and f-MEASURE to roc, INFORMEDNESS, MARKEDNESS AND CORRELATIONGoogle Scholar
  35. 35.
    Ren H, Ji H (2014) Nonparametric subspace analysis fused to 2DPCA for face recognition. Optik-International Journal for Light and Electron Optics 125(8):1922–1925CrossRefGoogle Scholar
  36. 36.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19:1635–1650MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    The ORL face database at the AT&T http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase. Site last visited April 2016
  38. 38.
  39. 39.
    Vu NS, Dee HM, Caplier A (2012) Face recognition using the POEM descriptor. Pattern Recog 45(7):2478–2488CrossRefGoogle Scholar
  40. 40.
    Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans on Pattern Analysis and Machine Intelligence 31(2):210–227CrossRefGoogle Scholar
  41. 41.
    Yan H, Wang P, Chen WD, Liu J (2015). Face recognition based on gabor wavelet transform and modular 2dpca. Proc. PEEE, 245–248Google Scholar
  42. 42.
    Yektaii M, Bhattacharya P (2011) A criterion for measuring the separability of clusters and its applications to principal component analysis. SIViP 5(1):93–104CrossRefGoogle Scholar
  43. 43.
    Yu W, Gan L, Yang S, Ding Y, Jiang P, Wang J, Li S (2014) An improved LBP algorithm for texture and face classification. SIViP 8(1):155–161CrossRefGoogle Scholar
  44. 44.
    Zhou SR, Yin JP, Zhang JM (2013) Local binary pattern (LBP) and local phase quantization (LBQ) based on Gabor filter for face representation. Neurocomputing 116:260–264CrossRefGoogle Scholar
  45. 45.
    Zhu Q, Xu Y (2013) Multi-directional two-dimensional PCA with matching score level fusion for face recognition. Neural Comput & Applic 23(1):169–174CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIIAN, Faculty of Sciences Dhar-MahrazSidi Mohamed Ben Abdellah UniversityFezMorocco
  2. 2.AICSMT, Polydisciplinary Faculty of NadorMohamed1 UniversityNadorMorocco

Personalised recommendations