Skip to main content
Log in

Natural image deblurring based on L0-regularization and kernel shape optimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The goal of blind image deblurring is to estimate the blur kernel and restore the sharp latent image based on an input blur image. This paper proposes a novel blind image deblurring algorithm based on L0-regularization and kernel shape optimization. Firstly, the proposed objective function of the optimization model is formulated with L0-norm terms of the gradient and intensity of kernels, which results to good sparsity and less noise in the obtained kernel. Then, the coarse-to-fine iterative framework is adopted to estimate reliable salient image structures implicitly, which can reduce computation and accelerate convergence. Finally, the kernel shape is optimized by weighting method, which enables the obtained kernel closer to the ground-truth. Experimental results on public bench mark datasets demonstrate that restored images are clear with less ring-artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cai JF, Ji H, Liu C, Shen Z (2012) Framelet-based blind motion deblurring from a single image. IEEE Trans Image Process A Publ IEEE Signal Process Soc 21(2):562–572

    MathSciNet  MATH  Google Scholar 

  2. Cho S, Lee S (2009) Fast motion deblurring. ACM Trans Graph 28(5):1–8

    Article  Google Scholar 

  3. Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) Removing camera shake from a single photograph. ACM Trans Graph 25(25):787–794

    Article  Google Scholar 

  4. Hirsch M, Schuler CJ, Harmeling S, Schölkopf B (2011) Blind deconvolution using a normalized sparsity measure. In: International conference on computer vision (ICCV). IEEE, Barcelona, pp 463–470

  5. Hu Z, Yang MH (2015) Learning good regions to deblur images. Int J Comput Vis 115(3):345–362

    Article  MathSciNet  Google Scholar 

  6. Hu Z, Cho S, Wang J, Yang MH (2014) Deblurring low-light images with light streaks. In: IEEE conference on computer vision and pattern recognition, pp 3382–3389

  7. Jiang X, Yao H, Zhao S (2017) Text image deblurring via two-tone prior. Neurocomputing 242:1–14

    Article  Google Scholar 

  8. Köhler R, Hirsch M, Mohler B, Schölkopf B, Harmeling S (2012) Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: European conference on computer vision. Springer, Firenze, pp 27-40

    Chapter  Google Scholar 

  9. Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Colorado, pp 233-240

  10. Kundur D, Hatzinakos D (1996) Blind image deconvolution. IEEE Signal Process Mag 13(3):43–64

    Article  Google Scholar 

  11. Lam L, Lee SW, Suen CY (1992) Thinning methodologies-a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–885

    Article  Google Scholar 

  12. Levin A, Weiss Y, Durand F, Freeman WT (2011) Efficient marginal likelihood optimization in blind deconvolution. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Colorado, pp 2657–2664

  13. Levin A, Weiss Y, Durand F, Freeman WT (2011) Understanding blind deconvolution algorithms. IEEE Trans Pattern Anal Mach Intell 33(12):2354–2367

    Article  Google Scholar 

  14. Li J, Lu W (2016) Blind image motion deblurring with l0-regularized priors. J Vis Commun Image Represent 40:14–23

    Article  Google Scholar 

  15. Pan J, Liu R, Su Z, Gu X (2012) Kernel estimation from salient structure for robust motion deblurring. Signal Process Image Commun 28(9):1156–1170

    Article  Google Scholar 

  16. Pan J, Hu Z, Su Z, Yang M (2014) Deblurring text images via L0-regularized intensity and gradient prior. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society, Columbus, pp 2901–2908

  17. Pan J, Hu Z, Su Z, Yang MH (2014) Deblurring face images with exemplars. In: European conference on computer vision. Springer International Publishing, Zürich, pp 47–62

    Google Scholar 

  18. Pan J, Sun D, Pfister H, Yang MH (2016) Blind image deblurring using dark channel prior. In: IEEE con- ference on computer vision and pattern recognition. IEEE Computer Society, Las Vegas, pp 1628-1636

  19. Ren W, Cao X, Pan J, Guo X, Zuo W, Yang M (2016) Image deblurring via enhanced low-rank prior. IEEE Trans Image Process 25(7):3426–3437

    Article  MathSciNet  Google Scholar 

  20. Roth S, Black MJ (2005) Fields of experts: a framework for learning image priors. In: IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society, San Diego, pp 860–867

  21. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27(3):1–10

    Article  Google Scholar 

  22. Simoncelli EP (2005) Statistical modeling of photographic images. Handb Image Video Process 415(2):431–441

    Article  Google Scholar 

  23. Sun S, Zhao H, Li B, Hao M, LvJ (2016) Kernel estimation for robust motion deblurring of noisy and blurry images. J Electron Imaging 25(3):033,019

    Article  Google Scholar 

  24. Whyte O, Sivic J, Zisserman A, Ponce J (2010) Non-uniform deblurring for shaken images. IEEE, San Francisco, pp 491–498. http://www.di.ens.fr/willow/research/deblurring/

    MATH  Google Scholar 

  25. Xu L, Jia J (2010) Two-phase kernel estimation for robust motion deblurring. In: European conference on computer vision. Springer, Heraklion, pp 157–170

    Chapter  Google Scholar 

  26. Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via l0 gradient minimization. ACM Trans Graph 30(6):1–12

    Google Scholar 

  27. Xu L, Zheng S, Jia J (2013) Unnatural l0 sparse representation for natural image deblurring. In: Computer vision and pattern recognition, Oregon, pp 1107–1114

  28. Yan Y, Ren W, Guo Y, Wang R, Cao X (2017) Image deblurring via extreme channels prior. In: IEEE conference on computer vision and pattern recognition. Hawaii, pp 6978–6986

  29. Yuan XT, Liu X, Yan S (2012) Visual classification with multitask joint sparse representation. IEEE Trans Image Process A Publ IEEE Signal Process Soc 21 (10):4349

    Article  MathSciNet  Google Scholar 

  30. Zhao S, Yao H, Gao Y, Ji R, Ding G (2017) Continuous probability distribution prediction of image emotions via multitask shared sparse regression. IEEE Trans Multimed 19(3):632–645

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. U1736118), the Natural Science Foundation of Guangdong (No. 2016A030313350), the Special Funds for Science and Technology Development of Guangdong (No. 2016KZ010103), the Key Project of Scientific Research Plan of Guangzhou (No. 201804020068), the Fundamental Research Funds for the Central Universities (No. 16lgjc83 and No. 17lgjc45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Lu, W., Liu, H. et al. Natural image deblurring based on L0-regularization and kernel shape optimization. Multimed Tools Appl 77, 26239–26257 (2018). https://doi.org/10.1007/s11042-018-5847-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5847-2

Keywords

Navigation