Multimedia Tools and Applications

, Volume 78, Issue 1, pp 213–236 | Cite as

Learning deep transmission network for efficient image dehazing

  • Zhigang LingEmail author
  • Guoliang Fan
  • Jianwei Gong
  • Siyu Guo


Single image dehazing algorithms are recently attracting more and more attention from many researchers because of their flexibility and practicality. However, most existing algorithms have some challenges in dealing with images captured under complex weather conditions because the often used assumptions cannot always reflect true structural information of natural images in those situations. In this paper, we develop a deep transmission network to estimate the transmission map for efficient image dehazing, which automatically explores and exploits underlying haze-relevant features from RGB color channels and a local patch jointly for robust transmission estimation. Moreover, due to the fact that transmission values are affected by light wavelengths, a three-channel transmission map is considered in the proposed network so that this network can discover and utilize the chromatic characteristics for transmission estimation. We also investigate different network structures and parameter settings to achieve different trade-offs between performance and speed, and find that three color channels and local spatial information are the most informative haze-relevant features. This could explain why haze relevant priors or assumptions are often related to three color channels in most existing methods. Experiment results demonstrate that the proposed algorithm outperforms state-of-the-art methods on both synthetic and real-world datasets.


Image dehazing Haze-relevant features Convolutional neural networks Deep transmission network 



This work was supported by the National Natural Science Foundation of China (Grant No. 61471166, 61471167 and 61671204) and Natural Science Foundation of Hunan Province (CN) (14JJ2052).


  1. 1.
    Aharon M, Elad M, Bruckstein A (2006) The K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Proccess 54 (11):4311–4322CrossRefGoogle Scholar
  2. 2.
    Ancuti CO, Ancuti C (2013) Single image dehazing by multi-scale fusion. IEEE Trans Image Process 22(8):3271–3282CrossRefGoogle Scholar
  3. 3.
    Ancuti C, Ancuti CO, De Vleeschouwer C (2016) D-hazy: a dataset to evaluate quantitatively dehazing algorithms. In: IEEE International conference on image processing (ICIP), pp 2226–2230Google Scholar
  4. 4.
    Cai B, Xu X, Jia K, Qing C, Tao D (2016) DehazeNet: an end-to-end system for single image haze removal. IEEE Trans Image Process 25(11):5187–5198MathSciNetCrossRefGoogle Scholar
  5. 5.
    Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901MathSciNetCrossRefGoogle Scholar
  6. 6.
    Danescu R, Pantilie C et al (2012) Particle grid tracking system stereovision based obstacle perception in driving environments. IEEE Intell Transp Syst Mag 4 (1):6–20CrossRefGoogle Scholar
  7. 7.
    Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307CrossRefGoogle Scholar
  8. 8.
    Fattal R (2008) Single image dehazing. ACM Trans Graph 27(3):721–729CrossRefGoogle Scholar
  9. 9.
    Fattal R (2014) Dehazing using color-lines. ACM Trans Graph 34(1):1–13CrossRefGoogle Scholar
  10. 10.
    Gaikwad V, Lokhande S (2015) Lane departure identification for advanced driver assistance. IEEE Trans Intell Transp Syst 16(2):910–918Google Scholar
  11. 11.
    Grabner M, Kvicera V (2011) The wavelength dependent model of extinction in fog and haze for free space optical communication. Opt Express 19(4):3379–3386CrossRefGoogle Scholar
  12. 12.
    Hao J, Li C, Kim Z, Xiong Z (2013) Spatio-temporal traffic scene modeling for object motion detection. IEEE Trans Intell Transp Syst 14(1):295–302CrossRefGoogle Scholar
  13. 13.
    Hautière N, Tarel J, Aubert D, Dumont (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analy Stereology 27(2):87–95MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hautiere N, Tarel JP et al (2010) Mitigation of visibility loss for advanced camera-based driver assistance. IEEE Trans Intell Transp Syst 11(2):474–484CrossRefGoogle Scholar
  15. 15.
    He K, Sun J (2015) Convolutional neural networks at constrained time cost. In: Internal conference on computer vision and pattern recognition (CVPR), pp 5353–5360Google Scholar
  16. 16.
    He K, Sun J, Tang X (2009) Single image haze removal using dark channel prior. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 1956–1963Google Scholar
  17. 17.
    Huang S, Chen B et al (2014) Visibility restoration of single hazy images captured in real-world weather conditions. IEEE Trans Circuits Syst Video Tech 24 (10):1814–1824CrossRefGoogle Scholar
  18. 18.
    Kim D, Jeon C, Kang B, Ko H (2008) Enhancement of image degraded by fog using cost function based on human visual model. In: IEEE International conference on multisensor fusion and integration for intelligent systems. SeoulGoogle Scholar
  19. 19.
    Kopf J, Neubert B, Chen B, Cohen MF, Deussen O et al (2008) Konstanz deep photo: model-based photograph enhancement and viewing. ACM Trans Graphics 27(5):116,1–116,10CrossRefGoogle Scholar
  20. 20.
    Koschmieder H (1925) Theorie der horizontaler Sichtweite Beitraege. Physicae Freiberger Atmosphere, 33–55Google Scholar
  21. 21.
    Kruse PW, McGlauchlin LD, McQuistan RB (1962) Elements of infrared technology: generation, transmission and detection. Wiley, New York. Chap. 5Google Scholar
  22. 22.
    Lai Y, Chen Y, Chiou C, Hsu C (2015) Single-image dehazing via optimal transmission map under scene priors. IEEE Trans Circuits Syst Video Tech 25(1):1–14CrossRefGoogle Scholar
  23. 23.
    LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRefGoogle Scholar
  24. 24.
    Lu H, Li Y, Nakashima S, Serikawa S (2016) Single image dehazing through improved atmospheric light estimation. Multimed Tools Appl 75(24):17081–17096CrossRefGoogle Scholar
  25. 25.
    Meng G, Wang Y, Duan J, Xiang S, Pan C (2013) Efficient image dehazing with boundary constraint and contextual regularization. In: IEEE International conference on computer vision (ICCV), pp 617–624Google Scholar
  26. 26.
    Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254CrossRefGoogle Scholar
  27. 27.
    Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724CrossRefGoogle Scholar
  28. 28.
    Narasimhan SG, Nayar SK (2003) Interactive (de)weathering of an image using physical models. IEEE workshop on color and photometric methods in computer vision. In: Conjunction with ICCVGoogle Scholar
  29. 29.
    Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: The Seventh IEEE international conference on computer vision. KerkyraGoogle Scholar
  30. 30.
    Oakley JP, Bu H (2007) Correction of simple contrast loss in color images. IEEE Trans Image Process 16(2):511–522MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ren W, Si L, Hua Z, Jinshan P, Xiaochun C, Yang M (2016) Single image dehazing via multi-scale convolutional neural networks. In: The 14th European conference on computer vision (ECCV), pp 154–169Google Scholar
  32. 32.
    Rong Z, Jun WL (2014) Improved wavelet transform algorithm for single image dehazing. Optik - Int J Light Electron Optic 125(13):3064–3066CrossRefGoogle Scholar
  33. 33.
    Schechner YY, Narasimhan SG, Nayar SK (2003) Polarization-based vision through haze. Appl Opt 42(3):511–525CrossRefGoogle Scholar
  34. 34.
    Tan RT (2008) Visibility in bad weather from a single image. In: IEEE International conference on computer vision (CVPR), pp 2347–2354Google Scholar
  35. 35.
    Tan H, He X, Wang Z, Liu G (2017) Parallel implementation and optimization of high definition video real-time dehazing. Multimed tools Appl 76(22):23413–23434CrossRefGoogle Scholar
  36. 36.
    Tang K, Yang J, Wang J (2014) Investigating haze-relevant features in a learning framework for image dehazing. In: The International conference computer vision and pattern recognition (CVPR), pp 2995–3002Google Scholar
  37. 37.
    Tarel JP, Hautiere N, Caraffa L, Cord A, Halmaoui H, Gruyer D (2012) Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell Transp Syst Mag 4(2):6–20CrossRefGoogle Scholar
  38. 38.
    Tian B, Li Y, Li B, Wen D (2014) Rear-view vehicle detection and tracking by combining multiple parts for complex urban surveillance. IEEE Trans Intell Transp Syst 15(2):597–606CrossRefGoogle Scholar
  39. 39.
    Wu BF, Kao C, Juang J, Huang Y (2013) A new approach to video-based traffic surveillance using fuzzy hybrid information inference mechanism. IEEE Trans Intell Transp Syst 14(1):485–491CrossRefGoogle Scholar
  40. 40.
    Xu Y, Xu D et al (2012) Detection of sudden pedestrian crossings for driving assistance systems. IEEE Trans Syst Man Cybern B Cybern 42(3):729–739CrossRefGoogle Scholar
  41. 41.
    Xu Z, Liu X, Chen X (2009) Fog removal from video sequences using contrast limited adaptive histogram equalization. In: International conference on computational intelligence and software engineering, pp 1–4Google Scholar
  42. 42.
    Zhou J, Zhou F (2013) Single image dehazing motivated by Retinex theory. In: The 2nd International symposium on instrumentation and measurement, sensor network and automation (IMSNA)Google Scholar
  43. 43.
    Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612CrossRefGoogle Scholar
  44. 44.
    Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhigang Ling
    • 1
    • 2
    Email author
  • Guoliang Fan
    • 3
  • Jianwei Gong
    • 1
  • Siyu Guo
    • 1
  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaChina
  2. 2.National Engineering Laboratory for Robot Visual Perception and Control TechnologyChangshaChina
  3. 3.School of Electrical and Computer EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations