Skip to main content
Log in

Sparsity constrained differential evolution enabled feature-channel-sample hybrid selection for daily-life EEG emotion recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Electroencephalography (EEG) reflects the activities of human brain and it can represent different emotional states to provide impersonal scientific evidence for daily-life emotional health monitoring. However, traditional multi-channel EEG sensing contains irrelevant or even interferential features, channels or samples, leading to redundant data and hardware complexity. This paper proposes a feature-channel-sample hybrid selection method to improve the channel selection, feature extraction and classification scheme for daily-life EEG emotion recognition. The features and channels are selected in pair with sparsity constrained differential evolution where the feature-channel pairs are optimized synchronously in the global search. Furthermore, the distance evaluation is carried out to remove abnormal samples to improve the emotion recognition accuracy. Therefore, efficient feature vectors for valence-arousal classification can be obtained by a small number of sparsely distributed channels. The experiments are based on the widely-used emotion recognition database DEAP and generate a feature-channel-sample hybrid selection scheme with optimized parameter settings. It can be derived that the proposed method can reduce the EEG channels sharply and maintain a relatively high accuracy compared with the related work. Furthermore, by applying this optimal scheme in practice, the real-scene daily-life EEG emotion recognition experiments are carried out on a sparsity constrained web-enabled system and a 10-fold cross validation is organized to confirm the performance. In conclusion, this paper provides a practical and efficient hardware configuration and feature-channel-sample optimal selection scheme for daily-life EEG emotion recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. AlZoubi O, Calvo R A, Stevens R H (2009) Classification of eeg for affect recognition: an adaptive approach. In: AI 2009: advances in artificial intelligence. Springer, pp 52–61

  2. Arvaneh M, Guan C, Ang K K, Quek C (2011) Optimizing the channel selection and classification accuracy in eeg-based bci. IEEE Trans Biomed Eng 58 (6):1865–1873

    Article  Google Scholar 

  3. Casson A J, Yates D C, Smith S J, Duncan J S, Rodriguez-Villegas E (2010) Wearable electroencephalography. IEEE Eng Med Biol Mag 29(3):44–56

    Article  Google Scholar 

  4. Chanel G, Kronegg J, Grandjean D, Pun T (2006) Emotion assessment: arousal evaluation using eeg and peripheral physiological signals. In: Multimedia content representation, classification and security, pp 530–537

  5. Chanel G, Kierkels J J, Soleymani M, Pun T (2009) Short-term emotion assessment in a recall paradigm. Int J Hum Comput Stud 67(8):607–627

    Article  Google Scholar 

  6. Chanel G, Rebetez C, Bétrancourt M, Pun T (2011) Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans Syst Man Cybern Part A Syst Hum 41(6):1052–1063

    Article  Google Scholar 

  7. Chaovalitwongse W A, Pottenger R S, Wang S, Fan Y J, Iasemidis L D (2011) Pattern-and network-based classification techniques for multichannel medical data signals to improve brain diagnosis. IEEE Trans Syst Man Cybern Part A Syst Hum 41 (5):977–988

    Article  Google Scholar 

  8. Chapman B P, Fiscella K, Kawachi I, Duberstein P, Muennig P (2013) Emotion suppression and mortality risk over a 12-year follow-up. J Psychosom Res 75 (4):381–385

    Article  Google Scholar 

  9. Chung S Y, Yoon H J (2012) Affective classification using bayesian classifier and supervised learning. In: 12th international conference on control, automation and systems (ICCAS), 2012. IEEE, pp 1768–1771

  10. Colwell K, Ryan D, Throckmorton C, Sellers E, Collins L (2014) Channel selection methods for the p300 speller. J Neurosci Methods 232:6–15

    Article  Google Scholar 

  11. Dai Y, Wang X, Li X, Tan Y (2015) Sparse eeg compressive sensing for web-enabled person identification. Measurement 74:11–20

    Article  Google Scholar 

  12. Dai Y, Wang X, Li X, Zhang P (2015) Reputation-driven multimodal emotion recognition in wearable biosensor network. In: IEEE international instrumentation and measurement technology conference (I2MTC), 2015. IEEE, pp 1747–1752

  13. Iacoviello D, Petracca A, Spezialetti M, Placidi G (2015) A real-time classification algorithm for eeg-based bci driven by self-induced emotions. Comput Methods Prog Biomed 122(3):293–303

    Article  Google Scholar 

  14. Jenke R, Peer A, Buss M (2014) Feature extraction and selection for emotion recognition from eeg. IEEE Trans Affect Comput 5(3):327–339

    Article  Google Scholar 

  15. Jirayucharoensak S, Pan-Ngum S, Israsena P (2014) EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci World J 2014:1–10

  16. Kaur B, Singh D, Roy P P (2017) A novel framework of EEG-based user identification by analyzing music-listening behavior. Multimed Tools Appl 76(24):25581–25602

  17. Khezri M, Firoozabadi M, Sharafat A R (2015) Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals. Comput Methods Prog Biomed 122(2):149–164

    Article  Google Scholar 

  18. Khosrowabadi R, Quek C, Ang K K, Wahab A (2014) Ernn: a biologically inspired feedforward neural network to discriminate emotion from eeg signal. IEEE Transactions on Neural Networks and Learning Systems 25(3):609–620

    Article  Google Scholar 

  19. Khushaba R N, Al-Ani A, Al-Jumaily A (2011) Feature subset selection using differential evolution and a statistical repair mechanism. Expert Syst Appl 38 (9):11,515–11,526

    Article  Google Scholar 

  20. Kim J C, Clements M A (2015) Multimodal affect classification at various temporal lengths. IEEE Trans Affect Comput 6(4):371–384

    Article  Google Scholar 

  21. Koelstra S, Muhl C, Soleymani M, Lee J S, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I (2012) Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31

    Article  Google Scholar 

  22. Konstantinidis E I, Frantzidis C A, Pappas C, Bamidis P D (2012) Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by graphic processor units. Comput Methods Prog Biomed 107(1):16–27

    Article  Google Scholar 

  23. Lal T N, Schroder M, Hinterberger T, Weston J, Bogdan M, Birbaumer N, Scholkopf B (2004) Support vector channel selection in bci. IEEE Trans Biomed Eng 51(6):1003–1010

    Article  Google Scholar 

  24. Liang S F, Kuo C E, Hu Y H, Pan Y H, Wang Y H (2012) Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models. IEEE Trans Instrum Meas 61(6):1649– 1657

    Article  Google Scholar 

  25. Lin C T, Lin B S, Lin F C, Chang C J (2014) Brain computer interface-based smart living environmental auto-adjustment control system in upnp home networking. IEEE Syst J 8(2):363–370

    Article  Google Scholar 

  26. Lin Y P, Wang C H, Jung T P, Wu T L, Jeng S K, Duann J R, Chen J H (2010) Eeg-based emotion recognition in music listening. IEEE Trans Biomed Eng 57(7):1798–1806

    Article  Google Scholar 

  27. Morris J D (1995) Observations: sam: the self-assessment manikin; an efficient cross-cultural measurement of emotional response. J Advert Res 35(6):63–68

    Google Scholar 

  28. Picard R W (2016) Automating the recognition of stress and emotion: from lab to real-world impact. IEEE MultiMedia 23(3):3–7

    Article  Google Scholar 

  29. Picot A, Charbonnier S, Caplier A (2012) On-line detection of drowsiness using brain and visual information. IEEE Trans Syst Man Cybern Part A Syst Hum 42(3):764–775

    Article  Google Scholar 

  30. Popescu F, Fazli S, Badower Y, Blankertz B, Müller K R (2007) Single trial classification of motor imagination using 6 dry eeg electrodes. PloS One 2(7):e637

    Article  Google Scholar 

  31. Qaraqe M, Ismail M, Abbasi Q, Serpedin E (2014) Channel selection and feature enhancement for improved epileptic seizure onset detector. In: EAI 4th international conference on wireless mobile communication and healthcare (Mobihealth), 2014. IEEE, pp 258–262

  32. Richman L S, Kubzansky L, Maselko J, Kawachi I, Choo P, Bauer M (2005) Positive emotion and health: going beyond the negative. Health Psychol 24 (4):422

    Article  Google Scholar 

  33. Sannelli C, Dickhaus T, Halder S, Hammer E M, Müller K R, Blankertz B (2010) On optimal channel configurations for smr-based brain–computer interfaces. Brain Topogr 23(2):186–193

    Article  Google Scholar 

  34. Shin D, Shin D, Shin D (2017) Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents. Multimed Tools Appl 76(9):11449–11470

  35. Soleymani M, Lichtenauer J, Pun T, Pantic M (2012) A multimodal database for affect recognition and implicit tagging. IEEE Trans Affect Comput 3(1):42–55

    Article  Google Scholar 

  36. Soleymani M, Asghari-Esfeden S, Fu Y, Pantic M (2016) Analysis of eeg signals and facial expressions for continuous emotion detection. IEEE Trans Affect Comput 7(1):17–28

    Article  Google Scholar 

  37. Verma G K, Tiwary U S (2016) Affect representation and recognition in 3d continuous valence–arousal–dominance space. Multimed Tools Appl 1–25

  38. Wang X, Wang S (2011) Hierarchical deployment optimization for wireless sensor networks. IEEE Trans Mob Comput 10(7):1028–1041

    Article  Google Scholar 

  39. Wang X, Ding L, Bi D (2010) Reputation-enabled self-modification for target sensing in wireless sensor networks. IEEE Trans Instrum Meas 59(1):171–179

    Article  Google Scholar 

  40. Wen W, Liu G, Cheng N, Wei J, Shangguan P, Huang W (2014) Emotion recognition based on multi-variant correlation of physiological signals. IEEE Trans Affect Comput 5(2):126–140

    Article  Google Scholar 

  41. Xu H, Plataniotis K N (2012) Affect recognition using eeg signal. In: IEEE 14th international workshop on multimedia signal processing (MMSP), 2012. IEEE, pp 299–304

  42. Xu P, Tian Y, Chen H, Yao D (2007) Lp norm iterative sparse solution for eeg source localization. IEEE Trans Biomed Eng 54(3):400–409

    Article  Google Scholar 

  43. Yılmaz B, Korkmaz S, Arslan DB, Güngör E, Asyalı MH (2014) Like/dislike analysis using eeg: determination of most discriminative channels and frequencies. Comput Methods Prog Biomed 113(2):705–713

    Article  Google Scholar 

  44. Yin Z, Zhao M, Wang Y, Yang J, Zhang J (2017) Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput Methods Programs Biomed 140:93–110

  45. Yoon H J, Chung S Y (2013) Eeg-based emotion estimation using bayesian weighted-log-posterior function and perceptron convergence algorithm. Comput Biol Med 43(12):2230–2237

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China under Grant #61472216, and by PhD Programs Foundation of Ministry of Education of China under Grant #20120002110067. The authors would like to thank Sander Koelstra, Christian Mühl and other dedicated researchers in the corresponding groups for providing DEAP dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Wang, X., Zhang, P. et al. Sparsity constrained differential evolution enabled feature-channel-sample hybrid selection for daily-life EEG emotion recognition. Multimed Tools Appl 77, 21967–21994 (2018). https://doi.org/10.1007/s11042-018-5618-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5618-0

Keywords

Navigation