Skip to main content
Log in

State estimation for tracking in image space with a de- and re-coupled IMM filter

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Estimating the motion state of objects is a central component of most visual tracking pipelines. Visual tracking relies on observations in scale space generated by an appearance model. Under real-life conditions, it is obvious to assume that the dynamic of a tracked object changes over time. A popular solution for considering such varying system characteristics is the Interacting Multiple Model (IMM) filter. Usually, the motion of objects is modeled using position, velocity, and acceleration. Although it seems obvious that different image space dimensions can be combined in one overall system state, this naive approach may fail under various circumstances. Toward this end, we demonstrate the benefit of decoupling the state estimate of an IMM filter in case of relying solely on the output of a visual tracker. Further, a state re-coupling scheme is introduced which helps to better deal with the corresponding measurement uncertainties of such a tracking pipeline. The proposed decoupled and re-coupled IMM filters are evaluated on publicly available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50:174–188

    Article  Google Scholar 

  2. Bar-Shalom Y, Kirubarajan T, Li XR (2002) Estimation with applications to tracking and navigation. Wiley

  3. Becker S, Kieritz H, Hübner W, Arens M (2016) On the benefit of state separation for tracking in image space with an interacting multiple model filter. In: International conference on image and signal processing ICISP, pp 3–11

  4. Blackman SS, Popoli R (1999) Design and analysis of modern tracking system. Artech House radar library

  5. Blom HAP, Bar-Shalom Y (1988) The interacting multiple model algorithm for systems with Markovian switching coefficients. Trans Autom Control 33:780–783

    Article  MATH  Google Scholar 

  6. Cehovin L, Kristan M, Leonardis A (2014) Is my new tracker really better than yours?. In: Winter conference on applications of computer vision (WACV), pp 540–547

  7. C̆ehovin L, Leonardis A, Kristan M (2016) Visual object tracking performance measures revisited. IEEE Trans Pattern Anal Mach Intell (PAMI) 25(3):1261–1274

    MathSciNet  Google Scholar 

  8. Cooper DC (1987) Multiple target tracking with radar applications. Electronics and Power 33:407

    Article  Google Scholar 

  9. Cordts M, Omran M, Ramos S, Scharwächter T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B (2015) The cityscapes dataset. CVPR workshop on the future of datasets in vision

  10. Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell (PAMI) 34:743–761

    Article  Google Scholar 

  11. Enzweiler M, Gavrila DM (2008) Monocular pedestrian detection: survey and experiments. IEEE Trans Pattern Anal Mach Intell (TPAMI) 31:2179–2195

    Article  Google Scholar 

  12. Gomes JBB (2008) An overview on target tracking using multiple model methods. PhD thesis, Technical University of Lisbon

  13. Hartikainen J, Särkkä S (2008) Optimal filtering with kalman filters and smoothers – a manual for matlab toolbox EKF/UKF. http://www.lce.hut.fi/research/mm/ekfukf/

  14. Kalman RE (1960) A new approach to linear filtering and prediction problems. ASME J Basic Eng 82(1):35–45

    Article  Google Scholar 

  15. Kieritz H, Becker S, Hübner W, Arens M (2016) Online multi-person tracking using integral channel features. In: Conference on advanced video and signal-based surveillance (AVSS)

  16. Leal-Taixé L, Milan A, Schindler K, Cremers D, Reid I, Roth S (2017) Tracking the trackers: an analysis of the state of the art in multiple object tracking. arXiv:1704.02781[cs]

  17. Li XR, Jilkov VP (2005) Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans Aerosp Electron Syst 41:1255–1321

    Article  Google Scholar 

  18. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Cheng-Yang F, Berg AC (2016) SSD: single shot multibox detector. In: European conference on computer vision (ECCV), pp 21–37

  19. Mazor E, Averbuch A, Bar-Shalom Y, Dayan J (1998) Interacting multiple model methods in target tracking: a survey. IEEE Trans Aerosp Electron Syst 34:103–123

    Article  Google Scholar 

  20. Milan A, Leal-Taixé L, Reid I, Roth S, Schindler K (2016) MOT16: A benchmark for multi-object tracking. arXiv:1603.00831

  21. Milan A, Rezatofighi SH, Dick A, Reid I, Schindler K (2017) Online multi-target tracking using recurrent neural networks. In: AAAI conference on artificial intelligence

  22. Ondruska P, Posner I (2016) Deep tracking: seeing beyond seeing using recurrent neural networks. In: AAAI conference on artificial intelligence, pp 3361–3367

  23. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell (TPAMI) 39(6):1137–1149

    Article  Google Scholar 

  24. Spinello D, Stilwell DJ (2010) Nonlinear estimation with state-dependent gaussian observation noise. Trans Autom Control 55:1358–1366

    Article  MathSciNet  MATH  Google Scholar 

  25. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics: intelligent robotics and autonomous agents. The MIT Press

  26. VOT (2014) Visual object tracking challenge dataset, european conference on computer vision workshops. http://www.votchallenge.net/vot2014/

  27. Wang H, Kirubarajan T, Bar-Shalom Y (1999) Precision large scale air traffic surveillance using IMM/assignment estimators. IEEE Trans Aerosp Electron Syst 35:255–266

    Article  Google Scholar 

  28. Wendel J, Metzger J, Trommer GF (2004) Rapid transfer alignment in the presence of time correlated measurement and system noise. In: AIAA guidance, navigation, and control conference and exhibit, pp 1–12

  29. Yeddanapudi M, Bar-Shalom Y, Pattipati K (1997) IMM Estimation for multitarget-multisensor air traffic surveillance. Proc IEEE 85:80–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Becker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, S., Hübner, W. & Arens, M. State estimation for tracking in image space with a de- and re-coupled IMM filter. Multimed Tools Appl 77, 20207–20226 (2018). https://doi.org/10.1007/s11042-017-5324-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5324-3

Keywords

Navigation