Multimedia Tools and Applications

, Volume 77, Issue 13, pp 17069–17107 | Cite as

Review on computer vision techniques in emergency situations

  • Laura Lopez-Fuentes
  • Joost van de Weijer
  • Manuel González-Hidalgo
  • Harald Skinnemoen
  • Andrew D. Bagdanov


In emergency situations, actions that save lives and limit the impact of hazards are crucial. In order to act, situational awareness is needed to decide what to do. Geolocalized photos and video of the situations as they evolve can be crucial in better understanding them and making decisions faster. Cameras are almost everywhere these days, either in terms of smartphones, installed CCTV cameras, UAVs or others. However, this poses challenges in big data and information overflow. Moreover, most of the time there are no disasters at any given location, so humans aiming to detect sudden situations may not be as alert as needed at any point in time. Consequently, computer vision tools can be an excellent decision support. The number of emergencies where computer vision tools has been considered or used is very wide, and there is a great overlap across related emergency research. Researchers tend to focus on state-of-the-art systems that cover the same emergency as they are studying, obviating important research in other fields. In order to unveil this overlap, the survey is divided along four main axes: the types of emergencies that have been studied in computer vision, the objective that the algorithms can address, the type of hardware needed and the algorithms used. Therefore, this review provides a broad overview of the progress of computer vision covering all sorts of emergencies.


Emergency management Computer vision Decision makers Situational awareness Critical situation 



This work was partially supported by the Spanish Grants TIN2016-75404-P AEI/FEDER, UE, TIN2014-52072-P, TIN2013-42795-P and the European Commission H2020 I-REACT project no. 700256. Laura Lopez-Fuentes benefits from the NAERINGSPHD fellowship of the Norwegian Research Council under the collaboration agreement Ref.3114 with the UIB. We thank the NVIDIA Corporation for support in the form of GPU hardware.


  1. 1.
    Abdallah S, Burnham G (2000) Public health guide for emergencies. Boston: The Johns Hopkins School of Hygiene and Public Health and The International Federation of Red Cross and Red Crescent SocietiesGoogle Scholar
  2. 2.
    Alhimale L, Zedan H, Al-Bayatti A (2014) The implementation of an intelligent and video-based fall detection system using a neural network. Appl Soft Comput 18:59–69CrossRefGoogle Scholar
  3. 3.
    Anderson D, Luke RH, Keller JM, Skubic M, Rantz M, Aud M (2009) Linguistic summarization of video for fall detection using voxel person and fuzzy logic. Comput Vis Image Underst 113(1):80–89CrossRefGoogle Scholar
  4. 4.
    Andrade EL, Blunsden S, Fisher RB (2006) Hidden Markov models for optical flow analysis in crowds. In: 18th international conference on pattern recognition (ICPR’06), vol 1, pp 460–463. IEEEGoogle Scholar
  5. 5.
    Andrade EL, Blunsden S, Fisher RB (2006) Modelling crowd scenes for event detection. In: 18th international conference on pattern recognition (ICPR’06), vol 1, pp 175–178. IEEEGoogle Scholar
  6. 6.
    Andrade EL, Fisher RB, Blunsden S (2006) Detection of emergency events in crowded scenes. In: The institution of engineering and technology conference on crime and security, 2006, pp 528–533. IETGoogle Scholar
  7. 7.
    Andriluka M, Schnitzspan P, Meyer J, Kohlbrecher S, Petersen K, Von Stryk O, Roth S, Schiele B (2010) Vision based victim detection from unmanned aerial vehicles. In: 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1740–1747. IEEEGoogle Scholar
  8. 8.
    Barmpoutis P, Dimitropoulos K, Grammalidis N (2014) Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition. In: 2014 22nd European Signal Processing Conference (EUSIPCO), pp 1078–1082. IEEEGoogle Scholar
  9. 9.
    Barth A, Franke U (2010) Tracking oncoming and turning vehicles at intersections. In: 2010 13th international IEEE conference on intelligent transportation systems (ITSC), pp 861–868. IEEEGoogle Scholar
  10. 10.
    Beauchemin SS, Barron JL (1995) The computation of optical flow. ACM Comput Surv 27(3):433–466CrossRefGoogle Scholar
  11. 11.
    Bejiga MB, Zeggada A, Nouffidj A, Melgani F (2017) A convolutional neural network approach for assisting avalanche search and rescue operations with UAV imagery. Remote Sens 9(2):100CrossRefGoogle Scholar
  12. 12.
    Below R, Wirtz A, Guha-Sapir D (2009) Disaster category classification and peril terminology for operational purposes. MunichRe Foundation, BrusselsGoogle Scholar
  13. 13.
    Benenson R, Omran M, Hosang J, Schiele B (2014) Ten years of pedestrian detection, what have we learned?. In: Computer Vision-ECCV 2014 Workshops, pp 613–627. SpringerGoogle Scholar
  14. 14.
    Bertozzi M, Broggi A, Lasagni A, Rose M (2005) Infrared stereo vision-based pedestrian detection. In: IEEE Proceedings. Intelligent Vehicles Symposium, 2005, pp 24–29. IEEEGoogle Scholar
  15. 15.
    Borges PVK, Izquierdo E (2010) A probabilistic approach for vision-based fire detection in videos. IEEE Trans Circuits Syst Video Technol 20(5):721–731CrossRefGoogle Scholar
  16. 16.
    Borges PVK, Mayer J, Izquierdo E (2008) A probabilistic model for flood detection in video sequences. In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008, pp 13–16. IEEEGoogle Scholar
  17. 17.
    Bouguet JY (2001) Pyramidal implementation of the affine Lucas-Kanade feature tracker description of the algorithm. Intel Corporation 5(1-10):4Google Scholar
  18. 18.
    Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: European conference on computer vision, pp 25–36. SpringerGoogle Scholar
  19. 19.
    Brox T, Malik J (2011) Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell 33(3):500–513CrossRefGoogle Scholar
  20. 20.
    Buch N, Velastin SA, Orwell J (2011) A review of computer vision techniques for the analysis of urban traffic. IEEE Trans Intell Transp Syst 12(3):920–939CrossRefGoogle Scholar
  21. 21.
    Calderara S, Piccinini P, Cucchiara R (2008) Smoke detection in video surveillance: a MoG model in the wavelet domain. In: International conference on computer vision systems, pp 119–128. SpringerGoogle Scholar
  22. 22.
    Castillo C, Chang C (2005) A method to detect victims in search and rescue operations using template matching. In: Safety, Security and Rescue Robotics, Workshop, 2005 IEEE International, pp 201–206. IEEEGoogle Scholar
  23. 23.
    Celik T (2010) Fast and efficient method for fire detection using image processing. ETRI J 32(6):881–890CrossRefGoogle Scholar
  24. 24.
    Celik T, Demirel H (2009) Fire detection in video sequences using a generic color model. Fire Saf J 44(2):147–158CrossRefGoogle Scholar
  25. 25.
    Ċetin AE, Dimitropoulos K, Gouverneur B, Grammalidis N, Günay O, Habiboglu YH, Töreyin BU, Verstockt S (2013) Video fire detection–review. Digital Signal Process 23(6):1827–1843CrossRefGoogle Scholar
  26. 26.
    Chen TH, Wu PH, Chiou YC (2004) An early fire-detection method based on image processing. In: 2004 international conference on image processing, 2004. ICIP’04, vol 3, pp 1707–1710. IEEEGoogle Scholar
  27. 27.
    Chen J, Kwong K, Chang D, Luk J, Bajcsy R (2005) Wearable sensors for reliable fall detection. In: Engineering in Medicine and Biology Society, pp 3551–3554Google Scholar
  28. 28.
    Chen J, He Y, Wang J (2010) Multi-feature fusion based fast video flame detection. Build Environ 45(5):1113–1122CrossRefGoogle Scholar
  29. 29.
    Chen HL, Tsai M, Chan C (2010) A Hidden Markov model-based approach for recognizing swimmer’s behaviors in swimming pool. In: 2010 international conference on machine learning and cybernetics, vol 5, pp 2459–2465. IEEEGoogle Scholar
  30. 30.
    Chen WH, Cho PC, Fan PL, Yang YW (2011) A framework for vision-based swimmer tracking. In: 2011 international conference on uncertainty reasoning and knowledge engineering (URKE), vol 1, pp 44–47. IEEEGoogle Scholar
  31. 31.
    Choi IH, Kim YG (2014) Head pose and gaze direction tracking for detecting a drowsy driver. In: 2014 international conference on big data and smart computing (BIGCOMP), pp 241–244. IEEEGoogle Scholar
  32. 32.
    Chong YS, Tay YH (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: International Symposium on Neural Networks, pp 189–196. SpringerGoogle Scholar
  33. 33.
    Chua JL, Chang YC, Lim WK (2015) A simple vision-based fall detection technique for indoor video surveillance. Signal, Image and Video Process 9(3):623–633CrossRefGoogle Scholar
  34. 34.
    Chunyu Y, Jun F, Jinjun W, Yongming Z (2010) Video fire smoke detection using motion and color features. Fire Technol 46(3):651–663CrossRefGoogle Scholar
  35. 35.
    Collins RT, Lipton AJ, Kanade T, Fujiyoshi H, Duggins D, Tsin Y, Tolliver D, Enomoto N, Hasegawa O, Burt P et al (2000) A system for video surveillance and monitoring. Tech. rep., Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon UniversityGoogle Scholar
  36. 36.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol 1, pp 886–893. IEEEGoogle Scholar
  37. 37.
    Danescu R, Nedevschi S (2009) Probabilistic lane tracking in difficult road scenarios using stereovision. IEEE Trans Intell Transp Syst 10(2):272–282CrossRefGoogle Scholar
  38. 38.
    Diem L, Zaharieva M (2016) Video content representation using recurring regions detection. In: International Conference on Multimedia Modeling, pp 16–28. SpringerGoogle Scholar
  39. 39.
    Doerr KU, Hutchinson TC, Kuester F (2005) A methodology for image-based tracking of seismic-induced motions. In: Proc. SPIE, vol 5758, pp 321–332Google Scholar
  40. 40.
    Dollar P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: An evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761CrossRefGoogle Scholar
  41. 41.
    Eng H, Toh K, Kam AH, Wang J, Yau WY (2003) An automatic drowning detection surveillance system for challenging outdoor pool environments. In: 19th IEEE international conference on computer vision, 2003. Proceedings, pp. 532–539. IEEEGoogle Scholar
  42. 42.
  43. 43.
    FATE: New fall detector arrives this september 2015 (2015).
  44. 44.
    Fei L, Xueli W, Dongsheng C (2009) Drowning detection based on background subtraction. In: International Conference on Embedded Software and Systems, 2009. ICESS’09, pp 341–343. IEEEGoogle Scholar
  45. 45.
    Forczmański P, Nowosielski A (2016) Multi-view data aggregation for behaviour analysis in video surveillance systems. In: International Conference on Computer Vision and Graphics, pp 462–473. SpringerGoogle Scholar
  46. 46.
    Foroughi H, Aski BS, Pourreza H (2008) Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: 11th international conference on computer and information technology, 2008. ICCIT 2008, pp 219–224Google Scholar
  47. 47.
    Frizzi S, Kaabi R, Bouchouicha M, Ginoux JM, Moreau E, Fnaiech F (2016) Convolutional neural network for video fire and smoke detection. In: IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp 877–882. IEEEGoogle Scholar
  48. 48.
    Fu Q, Banerjee A, Liess S, Snyder PK (2012) Drought detection of the last century: An MRF-based approach. In: SDM, pp 24–34. SIAMGoogle Scholar
  49. 49.
    Gade R, Moeslund TB (2014) Thermal cameras and applications: a survey. Mach Vis Appl 25(1):245–262CrossRefGoogle Scholar
  50. 50.
    Garate C, Bilinsky P, Bremond F (2009) Crowd event recognition using HOG tracker. In: 2009 Twelfth ieee international workshop on performance evaluation of tracking and surveillance (PETS-Winter), pp 1–6. IEEEGoogle Scholar
  51. 51.
    Gautama T, Van Hulle M (2002) A phase-based approach to the estimation of the optical flow field using spatial filtering. IEEE Trans Neural Netw 13(5):1127–1136CrossRefGoogle Scholar
  52. 52.
    Gavrila DM, Munder S (2007) Multi-cue pedestrian detection and tracking from a moving vehicle. Int J Comput Vis 73(1):41–59CrossRefGoogle Scholar
  53. 53.
    Geronimo D, Lopez AM, Sappa AD, Graf T (2009) Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans Pattern Anal Mach Intell 37(7):1239–1258CrossRefGoogle Scholar
  54. 54.
    Gevers T, Gijsenij A, van de Weijer J, Geusebroek J (2012) Color in computer vision: fundamentals and applications. Wiley, New JerseyCrossRefGoogle Scholar
  55. 55.
    Gomez-Rodriguez F, Arrue B, Ollero A (2003) Smoke monitoring and measurement using image processing: application to forest fires. In: International Society for Optics and Photonics AeroSense 2003, pp 404–411Google Scholar
  56. 56.
    Gonzalez-Gonzalez R, Alarcon-Aquino V, Romero RR, Starostenko O, Rodriguez-Asomoza J, Ramirez-Cortes J (2010) Wavelet-based smoke detection in outdoor video sequences. In: 2010 53rd IEEE international midwest symposium on circuits and systems (MWSCAS), pp 383–387. IEEEGoogle Scholar
  57. 57.
    Gope S, Sarkar S, Mitra P, Ghosh S (2016) Early prediction of extreme rainfall events: a deep learning approach. Springer International Publishing, Cham, pp 154–167Google Scholar
  58. 58.
    Grabisch M, Murofushi T, Sugeno M (2000) Fuzzy Measures and Integrals: Theory and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag HD, HeidelbergzbMATHGoogle Scholar
  59. 59.
    Gubbi J, Marusic S, Palaniswami M (2009) Smoke detection in video using wavelets and support vector machines. Fire Saf J 44(8):1110–1115CrossRefGoogle Scholar
  60. 60.
    Günay O, Taṡdemir K, Töreyin BU, Ċetin AE (2010) Fire detection in video using LMS based active learning. Fire Technol 46(3):551–577CrossRefGoogle Scholar
  61. 61.
    Guo C, Mita S, McAllester D (2012) Robust road detection and tracking in challenging scenarios based on Markov random fields with unsupervised learning. IEEE Trans Intell Transp Syst 13(3):1338–1354CrossRefGoogle Scholar
  62. 62.
    Haar A (1910) Zur theorie der orthogonalen funktionensysteme. Math Ann 69 (3):331–371MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Hachisuka S, Ishida K, Enya T, Kamijo M (2011) Facial expression measurement for detecting driver drowsiness. In: Engineering Psychology and Cognitive Ergonomics, pp 135–144. SpringerGoogle Scholar
  64. 64.
    Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp 147–151Google Scholar
  65. 65.
    Hassan-Esfahani L, Torres-Rua A, Jensen A, McKee M (2015) Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens 7(3):2627–2646CrossRefGoogle Scholar
  66. 66.
    Hayashi T, Yamada K (2009) Predicting unusual right-turn driving behavior at intersection. In: 2009 IEEE Intelligent Vehicles SymposiumGoogle Scholar
  67. 67.
    Hazelhoff L, Han J et al (2008) Video-based fall detection in the home using principal component analysis. In: Advanced Concepts for Intelligent Vision Systems, pp 298–309. SpringerGoogle Scholar
  68. 68.
    Houben S, Stallkamp J, Salmen J, Schlipsing M, Igel C (2013) Detection of traffic signs in real-world images: The german traffic sign detection benchmark. In: The 2013 international joint conference on neural networks (IJCNN), pp 1–8. IEEEGoogle Scholar
  69. 69.
    Hu S, Zheng G (2009) Driver drowsiness detection with eyelid related parameters by support vector machine. Expert Syst Appl 36(4):7651–7658CrossRefGoogle Scholar
  70. 70.
    Hu W, Xiao X, Fu Z, Xie D, Tan T, Maybank S (2006) A system for learning statistical motion patterns. IEEE Trans Pattern Anal Mach Intell 28(9):1450–1464CrossRefGoogle Scholar
  71. 71.
    Huang H, Liu H, Zhang L (2014) Videoweb: space-time aware presentation of a videoclip collection. IEEE J Emerging Sel Top Circuits Syst 4(1):142–152CrossRefGoogle Scholar
  72. 72.
    Hutchinson TC, Kuester F (2004) Monitoring global earthquake-induced demands using vision-based sensors. IEEE Trans Instrum Meas 53(1):31–36CrossRefGoogle Scholar
  73. 73.
    Ibraheem NA, Hasan MM, Khan RZ, Mishra PK (2012) Understanding color models: a review. ARPN J Sci Tech 2(3):265–275Google Scholar
  74. 74.
    Ihaddadene N, Djeraba C (2008) Real-time crowd motion analysis. In: 19th international conference on pattern recognition, 2008. ICPR 2008, pp 1–4. IEEEGoogle Scholar
  75. 75.
    IHSTechnology: 245 million video surveillance cameras installed globally in 2014 (2015).
  76. 76.
    Izadi M, Saeedi P (2008) Robust region-based background subtraction and shadow removing using color and gradient information. In: 2008 19th International Conference on Pattern Recognition, pp 1–5Google Scholar
  77. 77.
    Jiang F, Yuan J, Tsaftaris SA, Katsaggelos AK (2011) Anomalous video event detection using spatiotemporal context. Comput Vis Image Underst 115 (3):323–333CrossRefGoogle Scholar
  78. 78.
    Jiang M, Chen Y, Zhao Y, Cai A (2013) A real-time fall detection system based on HMM and RVM. In: Visual Communications and Image Processing (VCIP), 2013, pp 1–6. IEEEGoogle Scholar
  79. 79.
    Juang CF, Chang CM (2007) Human body posture classification by a neural fuzzy network and home care system application. IEEE Trans Syst Man Cybern Part A Syst Hum 37(6):984–994CrossRefGoogle Scholar
  80. 80.
    Juang CF, Lin CT (1998) An online self-constructing neural fuzzy inference network and its applications. IEEE Trans Fuzzy Syst 6(1):12–32CrossRefGoogle Scholar
  81. 81.
    Kam AH, Lu W, Yau WY (2002) A video-based drowning detection system. In: European Conference on Computer Vision, pp 297–311. SpringerGoogle Scholar
  82. 82.
    Kamijo S, Matsushita Y, Ikeuchi K, Sakauchi M (2000) Traffic monitoring and accident detection at intersections. IEEE Trans Intell Transp Syst 1(2):108–118CrossRefGoogle Scholar
  83. 83.
    Kang B, Choo H (2016) A deep-learning-based emergency alert system. ICT Express 2(2):67–70CrossRefGoogle Scholar
  84. 84.
    Kanistras K, Martins G, Rutherford MJ, Valavanis KP (2015) Survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: Handproceedings of Unmanned Aerial Vehicles, pp 2643–2666. SpringerGoogle Scholar
  85. 85.
    Ke SR, Thuc HLU, Lee YJ, Hwang JN, Yoo JH, Choi KH (2013) A review on video-based human activity recognition. Computers 2(2):88–131CrossRefGoogle Scholar
  86. 86.
    Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground–background segmentation using codeproceedings model. Real-Time Imaging 11(3):172–185CrossRefGoogle Scholar
  87. 87.
    Kleiner A, Kummerle R (2007) Genetic MRF model optimization for real-time victim detection in search and rescue. In: IEEE/RSJ international conference on intelligent robots and systems, 2007. IROS 2007, pp 3025–3030. IEEEGoogle Scholar
  88. 88.
    Ko B, Cheong KH, Nam JY (2010) Early fire detection algorithm based on irregular patterns of flames and hierarchical bayesian networks. Fire Saf J 45(4):262–270CrossRefGoogle Scholar
  89. 89.
    Kogan FN (1995) Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull Amer Meteor Soc 76(5):655–668CrossRefGoogle Scholar
  90. 90.
    Kolesov I, Karasev P, Tannenbaum A, Haber E (2010) Fire and smoke detection in video with optimal mass transport based optical flow and neural networks. In: 2010 IEEE International Conference on Image Processing, pp 761–764Google Scholar
  91. 91.
    Kovacic K, Ivanjko E, Gold H (2013) Computer vision systems in road vehicles: a review. In: the Proceedings of the Croatian Computer Vision WorkshopGoogle Scholar
  92. 92.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105Google Scholar
  93. 93.
    Kumar KC, Bhowmick B (2009) An application for driver drowsiness identification based on pupil detection using IR camera. In: Proceedings of the First International Conference on Intelligent Human Computer Interaction, pp 73–82. SpringerGoogle Scholar
  94. 94.
    Lagerstrom R, Arzhaeva Y, Szul P, Obst O, Power R, Robinson B, Bednarz T (2016) Image classification to support emergency situation awareness. Front Robot AI 3:54CrossRefGoogle Scholar
  95. 95.
    Lai C, Yang J, Chen Y (2007) A real time video processing based surveillance system for early fire and flood detection. In: Instrumentation and Measurement Technology Conference Proceedings, 2007. IMTC 2007 IEEE, pp 1–6. IEEEGoogle Scholar
  96. 96.
    LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwritten digit recognition with a back-propagation network. In: Advances in neural information processing systems, pp 396–404Google Scholar
  97. 97.
    Lee BG, Jung SJ, Chung WY (2011) Real-time physiological and vision monitoring of vehicle driver for non-intrusive drowsiness detection. IET Commun 5 (17):2461–2469MathSciNetCrossRefGoogle Scholar
  98. 98.
    Leira FS, Johansen TA, Fossen TI (2015) Automatic detection, classification and tracking of objects in the ocean surface from UAVs using a thermal camera. In: Aerospace Conference, 2015 IEEE, pp 1–10. IEEEGoogle Scholar
  99. 99.
    Li L, Huang W, Gu IY, Tian Q (2003) Foreground object detection from videos containing complex background. In: Proceedings of the eleventh ACM international conference on Multimedia, pp 2–10. ACMGoogle Scholar
  100. 100.
    Liao YT, Huang CL, Hsu SC (2012) Slip and fall event detection using Bayesian belief network. Pattern Recogn 45(1):24–32CrossRefGoogle Scholar
  101. 101.
    Lin CW, Ling ZH (2007) Automatic fall incident detection in compressed video for intelligent homecare. In: Proceedings of 16th international conference on computer communications and networks, 2007. ICCCN 2007, pp 1172–1177. IEEEGoogle Scholar
  102. 102.
    Lopez-Fuentes L, Bagdanov AD, van de Weijer J, Skinnemoen H (2017) Bandwidth limited object recognition in high resolution imagery. In: 2017 IEEE winter conference on applications of computer vision (WACV), pp 1197–1205. IEEEGoogle Scholar
  103. 103.
    Lu W, Tan YP (2004) A vision-based approach to early detection of drowning incidents in swimming pools. IEEE Trans Circuits Sys Video Technol 14(2):159–178CrossRefGoogle Scholar
  104. 104.
    Lu YM, Do MN (2007) Multidimensional directional filter banks and surfacelets. IEEE Trans Image Process 16(4):918–931MathSciNetCrossRefGoogle Scholar
  105. 105.
    Lucas BD, Kanade T et al (1981) An iterative image registration technique with an application to stereo vision. Int Joint Conference Artif Intell 81(1):674–679Google Scholar
  106. 106.
    Ma J, Murphey YL, Zhao H (2015) Real time drowsiness detection based on lateral distance using wavelet transform and neural network. In: 2015 IEEE symposium series on computational intelligence, pp 411–418. IEEEGoogle Scholar
  107. 107.
    Maalel N, Natalizio E, Bouabdallah A, Roux P, Kellil M (2013) Reliability for emergency applications in internet of things. In: 2013 IEEE international conference on distributed computing in sensor systems (DCOSS), pp 361–366. IEEEGoogle Scholar
  108. 108.
    Maksymiv O, Rak T, Menshikova O (2016) Deep convolutional network for detecting probable emergency situations. In: IEEE 1st international conference on data stream mining & processing (DSMP), pp 199–202. IEEEGoogle Scholar
  109. 109.
    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRefzbMATHGoogle Scholar
  110. 110.
    Martinez-de Dios JR, Arrue B, Ollero A, Merino L, Gómez-Rodríguez F (2008) Computer vision techniques for forest fire perception. Image Vis Comput 26(4):550–562CrossRefGoogle Scholar
  111. 111.
    Martinis S (2010) Automatic near real-time flood detection in high resolution x-band synthetic aperture radar satellite data using context-based classification on irregular graphs. Ph.D. thesis, lmuGoogle Scholar
  112. 112.
    Mason DC, Speck R, Devereux B, Schumann GJ, Neal JC, Bates PD (2010) Flood detection in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 48(2):882–894CrossRefGoogle Scholar
  113. 113.
    Mason DC, Davenport IJ, Neal JC, Schumann GJP, Bates PD (2012) Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE Trans Geosci Remote Sens 50(8):3041–3052CrossRefGoogle Scholar
  114. 114.
    Medel JR, Savakis A (2016) Anomaly detection in video using predictive convolutional long short-term memory networks. arXiv:1612.00390
  115. 115.
    Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009, pp 935–942. IEEEGoogle Scholar
  116. 116.
    Mirmahboub B, Samavi S, Karimi N, Shirani S (2013) Automatic monocular system for human fall detection based on variations in silhouette area. IEEE Trans Biomed Eng 60(2):427–436CrossRefGoogle Scholar
  117. 117.
  118. 118.
    Mogelmose A, Liu D, Trivedi MM (2014) Traffic sign detection for us roads: Remaining challenges and a case for tracking. In: 2014 IEEE 17th international conference on intelligent transportation systems (ITSC), pp 1394–1399. IEEEGoogle Scholar
  119. 119.
    Muscio A, Corticelli MA (2004) Land mine detection by infrared thermography: reduction of size and duration of the experiments. IEEE Trans Geosci Remote Sens 42(9):1955–1964CrossRefGoogle Scholar
  120. 120.
    Nagatani K, Kiribayashi S, Okada Y, Otake K, Yoshida K, Tadokoro S, Nishimura T, Yoshida T, Koyanagi E, Fukushima M et al (2013) Emergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robots. J Field Rob 30(1):44–63CrossRefGoogle Scholar
  121. 121.
    Petak WJ (1985) Emergency management: A challenge for public administration. Public Adm Rev 45:3–7CrossRefGoogle Scholar
  122. 122.
    Piccardi M (2004) Background subtraction techniques: a review. In: 2004 IEEE international conference on systems, man and cybernetics, vol 4, pp 3099–3104. IEEEGoogle Scholar
  123. 123.
    Piciarelli C, Micheloni C, Foresti GL (2008) Trajectory-based anomalous event detection. IEEE Trans Circuits Syst Video Technol 18(11):1544–1554CrossRefGoogle Scholar
  124. 124.
    Price J, Maraviglia C, Seisler W, Williams E, Pauli M (2004) System capabilities, requirements and design of the GDL gunfire detection and location system. In: International Symposium on Information Theory, 2004. ISIT 2004. Proceedings, pp 257–262. IEEEGoogle Scholar
  125. 125.
    Rabiner L, Juang B (1986) An introduction to hidden Markov models. IEEE ASSP Mag 3(1):4–16CrossRefGoogle Scholar
  126. 126.
    Radianti J, Granmo OC, Bouhmala N, Sarshar P, Yazidi A, Gonzalez J (2013) Crowd models for emergency evacuation: A review targeting human-centered sensing. In: 2013 46th Hawaii international conference on system sciences (HICSS), pp 156–165. IEEEGoogle Scholar
  127. 127.
    Reisinger KS (1980) Smoke detectors: reducing deaths and injuries due to fire. Pediatrics 65(4):718–724Google Scholar
  128. 128.
    Rinsurongkawong S, Ekpanyapong M, Dailey MN (2012) Fire detection for early fire alarm based on optical flow video processing. In: 2012 9th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ecti-con), pp 1–4. IEEEGoogle Scholar
  129. 129.
    Rougier C, Meunier J, St-Arnaud A, Rousseau J (2007) Fall detection from human shape and motion history using video surveillance. In: 21st international conference on advanced information networking and applications workshops, 2007, AINAW’07, vol 2, pp 875–880. IEEEGoogle Scholar
  130. 130.
    Rougier C, Auvinet E, Rousseau J, Mignotte M, Meunier J (2011) Fall detection from depth map video sequences. In: Toward useful services for elderly and people with disabilities, pp 121–128. SpringerGoogle Scholar
  131. 131.
    Rudol P, Doherty P (2008) Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery. In: Aerospace Conference, 2008 IEEE, pp 1–8. IEEEGoogle Scholar
  132. 132.
    Sabokrou M, Fayyaz M, Fathy M et al (2016) Fully convolutional neural network for fast anomaly detection in crowded scenes. arXiv:1609.00866
  133. 133.
    Sakour I, Hu H (2017) Robot-assisted crowd evacuation under emergency situations: A survey. Robotics 6(2):8CrossRefGoogle Scholar
  134. 134.
    Saligrama V, Chen Z (2012) Video anomaly detection based on local statistical aggregates. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 2112–2119. IEEEGoogle Scholar
  135. 135.
    Schoeffmann K, Hudelist MA, Huber J (2015) Video interaction tools: A survey of recent work. ACM Comput Surv 48(1):14CrossRefGoogle Scholar
  136. 136.
    Shah B, Choset H (2004) Survey on urban search and rescue robots. J Robot Soc Japan 22(5):582–586CrossRefGoogle Scholar
  137. 137.
    Shieh WY, Huang JC (2012) Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system. Med Eng Phys 34(7):954–963CrossRefGoogle Scholar
  138. 138.
    Siegel R (2002) Land mine detection. IEEE Instrum Meas Mag 5(4):22–28CrossRefGoogle Scholar
  139. 139.
    Sixsmith A, Johnson N (2004) A smart sensor to detect the falls of the elderly. IEEE Pervasive Comput 3(2):42–47CrossRefGoogle Scholar
  140. 140.
    Song Y, Njoroge JB, Morimoto Y (2013) Drought impact assessment from monitoring the seasonality of vegetation condition using long-term time-series satellite images: a case study of Mt. Kenya region. Environ Monit Assess 185(5):4117–4124CrossRefGoogle Scholar
  141. 141.
    Soni B, Sowmya A (2012) Classifier ensemble with incremental learning for disaster victim detection. In: 2012 IEEE international conference on robotics and biomimetics (ROBIO), pp 446–451. IEEEGoogle Scholar
  142. 142.
    Soni B, Sowmya A (2013) Victim detection and localisation in an urban disaster site. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO), pp 2142–2147. IEEEGoogle Scholar
  143. 143.
    Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747–757CrossRefGoogle Scholar
  144. 144.
    Suard F, Rakotomamonjy A, Bensrhair A, Broggi A (2006) Pedestrian detection using infrared images and histograms of oriented gradients. In: 2006 IEEE Intelligent Vehicles Symposium, pp 206–212. IEEEGoogle Scholar
  145. 145.
    Sultani W, Choi JY (2010) Abnormal traffic detection using intelligent driver model. In: 2010 20th international conference on pattern recognition (ICPR), pp 324–327. IEEEGoogle Scholar
  146. 146.
    Thome N, Miguet S, Ambellouis S (2008) A real-time, multiview fall detection system: A LHMM-Based approach. IEEE Trans Circuits Syst Video Technol 18(11):1522–1532CrossRefGoogle Scholar
  147. 147.
    Tian H, Li W, Ogunbona P, Nguyen DT, Zhan C (2011) Smoke detection in videos using non-redundant local binary pattern-based features. In: 2011 IEEE 13th international workshop on multimedia signal processing (MMSP), pp 1–4. IEEEGoogle Scholar
  148. 148.
    Tompkin J, Kim KI, Kautz J, Theobalt C (2012) Videoscapes: exploring sparse, unstructured video collections. ACM Trans Graph 31(4):68CrossRefGoogle Scholar
  149. 149.
    Toreyin BU, Dedeoglu Y, Cetin AE (2006) HMM based falling person detection using both audio and video. In: 2006 IEEE 14th signal processing and communications applications, pp 1–4Google Scholar
  150. 150.
    Töreyin BU, Dedeoġlu Y, Güdükbay U, Cetin AE (2006) Computer vision based method for real-time fire and flame detection. Pattern Recogn Lett 27 (1):49–58CrossRefGoogle Scholar
  151. 151.
    Transportation Systems FI (2016) Vehicle, pedestrian, bicycle presence sensors.
  152. 152.
    Trivedi MM, Gandhi T, McCall J (2007) Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety. IEEE Trans Intell Transp Syst 8(1):108–120CrossRefGoogle Scholar
  153. 153.
    Truong TX, Kim JM (2012) Fire flame detection in video sequences using multi-stage pattern recognition techniques. Eng Appl Artif Intell 25(7):1365–1372CrossRefGoogle Scholar
  154. 154.
    U.S. Department of Transportation: Traffic safety facts (2015).
  155. 155.
    Utasi Á, Benedek C (2012) A multi-view annotation tool for people detection evaluation. In: Proceedings of the 1st international workshop on visual interfaces for ground truth collection in computer vision applications, p 3. ACMGoogle Scholar
  156. 156.
    Van Hamme D, Veelaert P, Philips W, Teelen K (2010) Fire detection in color images using Markov random fields. In: International conference on advanced concepts for intelligent vision systems, pp 88–97. SpringerGoogle Scholar
  157. 157.
    Veeraraghavan H, Masoud O, Papanikolopoulos NP (2003) Computer vision algorithms for intersection monitoring. IEEE Trans Intell Transp Syst 4(2):78–89CrossRefGoogle Scholar
  158. 158.
    Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  159. 159.
    Violence WHO, Prevention I, Organization WH (2015) Global status report on road safety 2015. World Health Organization, GenevaGoogle Scholar
  160. 160.
    Wang T, Snoussi H (2012) Histograms of optical flow orientation for visual abnormal events detection. In: 2012 IEEE 9th international conference on advanced video and signal-based surveillance (AVSS), pp 13–18. IEEEGoogle Scholar
  161. 161.
    Wang J, Chen DB, Chen HY, Yang J (2012) On pedestrian detection and tracking in infrared videos. Pattern Recogn Lett 33(6):775–785CrossRefGoogle Scholar
  162. 162.
    Wang H, Finn A, Erdinc O, Vincitore A (2013) Spatial-temporal structural and dynamics features for video fire detection. In: 2013 IEEE workshop on applications of computer vision (WACV), pp 513–519. IEEEGoogle Scholar
  163. 163.
    Wang S, He Y, Zou JJ, Zhou D, Wang J (2014) Early smoke detection in video using swaying and diffusion feature. J Intell Fuzzy Syst 26(1):267–275Google Scholar
  164. 164.
    Wasaki K, Shimoi N, Takita Y, Kawamoto PN (2001) A smart sensing method for mine detection using time difference IR images. In: International conference on multisensor fusion and integration for intelligent systems, 2001. MFI 2001, pp 133–139. IEEEGoogle Scholar
  165. 165.
    Wojek C, Walk S, Schiele B (2009) Multi-cue onboard pedestrian detection. In: IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009, pp 794–801. IEEEGoogle Scholar
  166. 166.
    Xiong Z, Caballero R, Wang H, Finn AM, Lelic MA, Peng PY (2007) Video-based smoke detection: possibilities, techniques, and challenges. In: IFPA, fire suppression and detection research and applications—a technical working conference (SUPDET), Orlando, FLGoogle Scholar
  167. 167.
    Xu Z, Xu J (2007) Automatic fire smoke detection based on image visual features. In: International conference on computational intelligence and security workshops, 2007. CISW 2007, pp 316–319. IEEEGoogle Scholar
  168. 168.
    Xu Z, Xu J (2007) Automatic fire smoke detection based on image visual features. In: International conference on computational intelligence and security workshops, 2007. CISW 2007, pp 316–319Google Scholar
  169. 169.
    Xu G, Zhang Y, Zhang Q, Lin G, Wang J (2017) Deep domain adaptation based video smoke detection using synthetic smoke images. arXiv:1703.10729
  170. 170.
    Yamato J, Ohya J, Ishii K (1992) Recognizing human action in time-sequential images using hidden Markov model. In: 1992 IEEE computer society conference on computer vision and pattern recognition, 1992. Proceedings CVPR ’92, pp 379–385.
  171. 171.
    Yang L, Yang SH, Plotnick L (2013) How the internet of things technology enhances emergency response operations. Technol Forecast Soc Chang 80(9):1854–1867CrossRefGoogle Scholar
  172. 172.
    Ye W, Zhao J, Wang S, Wang Y, Zhang D, Yuan Z (2015) Dynamic texture based smoke detection using surfacelet transform and hmt model. Fire Saf J 73:91–101CrossRefGoogle Scholar
  173. 173.
    Yilmaz A, Javed O, Shah M (2006) Object tracking: A survey. ACM Comput Surv 38(4):13CrossRefGoogle Scholar
  174. 174.
    Yu C, Mei Z, Zhang X (2013) A real-time video fire flame and smoke detection algorithm. Protein Eng 62:891–898Google Scholar
  175. 175.
    Yuan F (2011) Video-based smoke detection with histogram sequence of LBP and LBPV pyramids. Fire Saf J 46(3):132–139CrossRefGoogle Scholar
  176. 176.
    Yun K, Jeong H, Yi KM, Kim SW, Choi JY (2014) Motion interaction field for accident detection in traffic surveillance video. In: 2014 22nd international conference on pattern recognition (ICPR), pp 3062–3067. IEEEGoogle Scholar
  177. 177.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefzbMATHGoogle Scholar
  178. 178.
    Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern SMC-3(1):28–44MathSciNetCrossRefzbMATHGoogle Scholar
  179. 179.
    Zaklouta F, Stanciulescu B (2011) Warning traffic sign recognition using a HOG-based Kd tree. In: 2011 IEEE intelligent vehicles symposium (IV), pp 1019–1024. IEEEGoogle Scholar
  180. 180.
    Zecha D, Greif T, Lienhart R (2012) Swimmer detection and pose estimation for continuous stroke-rate determination. In: IS&T/SPIE Electronic Imaging, pp 830,410–830,410. International Society for Optics and PhotonicsGoogle Scholar
  181. 181.
    Zhang T, Wang J, Xu L, Liu P (2006) Fall detection by wearable sensor and one-class SVM algorithm. In: Intelligent computing in signal processing and pattern recognition, pp 858–863. SpringerGoogle Scholar
  182. 182.
    Zhang Q, Xu J, Xu L, Guo H (2016) Deep convolutional neural networks for forest fire detection. In: Proceedings of the 2016 International Forum on Management, Education and Information Technology Application. Atlantis PressGoogle Scholar
  183. 183.
    Zhou S, Shen W, Zeng D, Fang M, Wei Y, Zhang Z (2016) Spatial–temporal convolutional neural networks for anomaly detection and localization in crowded scenes. Signal Process Image Commun 47:358–368CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.TM-RCS Working GroupAnsuR Technologies ASFornebuNorway
  2. 2.Department of Mathematics and Computer ScienceUniversity of the Balearic IslandsPalmaSpain
  3. 3.Computer Vision CenterUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.University of Florence, DINFOFlorenceItaly
  5. 5.Balearic Islands Health Research Institute (IdISBa)PalmaSpain

Personalised recommendations