Image authentication using distributed arithmetic coding

Abstract

Image authentication using distributed arithmetic coding (DAC) is studied in this paper. The quantized random projections of the original image are compressed by a DAC encoder and the codeword is taken as the authentication data. With the help of a target image as side information, the DAC decoder could recover the projections. The authentication process is achieved by examining the Euclidean distance between the reconstructed projections and the side information. Compared with existing approaches, the proposed approach has a simpler structure without the help of an additional cryptographic hash function to verify the decoding result. Moreover, the authentication data is more compact with fewer size. Simulation results justify that the proposed approach achieves a comparable performance as existing schemes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Choi K-C, Pun C-M (2016) Robust lossless digital watermarking using integer transform with Bit plane manipulation. Multimed Tool Appl 75(11):6621–6645. https://doi.org/10.1007/s11042-015-2596-3

    Article  Google Scholar 

  2. 2.

    Computer Vision Group, University of Granada, Test images: Miscelaneous gray level images (512512). http://decsai.ugr.es/cvg/dbimagenes/g512.php

  3. 3.

    Cover TM, Thomas JA (2006) Elements of information theory (Wiley Series in Telecommunications and Signal Processing) Wiley-Interscience

  4. 4.

    Davarzani R, Mozaffari S, Yaghmaie K (2016) Perceptual image hashing using center-symmetric local binary patterns. Multimed Tool Appl 75(8):4639–4667

    Article  Google Scholar 

  5. 5.

    Fridrich J (2009) Digital image forensics. IEEE Signal Proc Mag 26(2):26–37

    Article  Google Scholar 

  6. 6.

    Girod B, Margot A, Rane S, Rebollo-Monedero D (2005) Distributed video coding. Proc IEEE 93(1):71–83

    Article  Google Scholar 

  7. 7.

    Grangetto M, Magli E, Tron R, Olmo G (2008) Rate-compatible distributed arithmetic coding. IEEE Commun Lett 12(8):575–577

    Article  Google Scholar 

  8. 8.

    Grangetto M, Magli E, Olmo G (2009) Distributed arithmetic coding for the slepian-Wolf problem. IEEE Trans Signal Process 57(6):2245–2257

    MathSciNet  Article  Google Scholar 

  9. 9.

    Hagag A, Fan X, Abd El-Samie FE (2016) Hyperspectral image coding and transmission scheme based on wavelet transform and distributed source coding. Multimed Tool Appl. https://doi.org/10.1007/s11042-016-4158-8

  10. 10.

    Jia Y, Wang Y, Song R, Li J (2015) Decoder side information generation techniques in Wyner-Ziv video coding: a review. Multimed Tool Appl 74(6):1777–1803

    Article  Google Scholar 

  11. 11.

    Kang LW, Lu CS, Hsu CY (2009) Compressive sensing-based image hashing. In: IEEE International Conference on Image Processing, pp 1277–1280

  12. 12.

    Keshtkarjahromi Y, Valipour M, Lahouti F (2014) Multi-level distributed arithmetic coding with nested lattice quantization. In: Data Compression Conference, pp 382–391

  13. 13.

    Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48(177):203–209

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Lin Y-C, Varodayan D, Girod B (2012) Image authentication using distributed source coding. IEEE Trans Image Process 21(1):273–283

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Liu H, Xiao D, Xiao Y, Zhang Y (2016) Robust image hashing with tampering recovery capability via low-rank and sparse representation. Multimed Tool Appl 75(13):7681–7696

    Article  Google Scholar 

  16. 16.

    Luo W, Huang J, Qiu G (2010) JPEG Error analysis and its applications to digital image forensics. IEEE Trans Inf Forensics Secur 5(3):480–491

    Article  Google Scholar 

  17. 17.

    Maeno K, Sun Q, Shih-Fu C, Suto M (2006) New semi-fragile image authentication watermarking techniques using random bias and nonuniform quantization. IEEE Trans Multimedia 8(1):32–45

    Article  Google Scholar 

  18. 18.

    Ramalho M, Correia P, Soares LD (2011) Distributed source coding for securing a hand-based biometric recognition system. In: 18th IEEE International Conference on Image Processing, pp 1825–1828

  19. 19.

    Ramalho M, Singh S, Correia P, Soares LD (2012) Distributed source coding: application in biometrics. In: Proceedings of the 20th European Signal Processing Conference, pp 554–558

  20. 20.

    Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Slepian D, Wolf JK (1973) Noiseless coding of correlated information sources. IEEE Trans Inf Theory 19(4):471–480

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Sutcu Y, Rane S, Yedidia JS, Draper SC, Vetro A (2008) Feature extraction for a Slepian-Wolf biometric system using LDPC codes. In: IEEE International Symposium on Information Theory, pp 2297–2301

  23. 23.

    Swaminathan A, Mao YN, Wu M (2006) Robust and secure image hashing. IEEE Trans Inf Forensics Secur 1(2):215–230

    Article  Google Scholar 

  24. 24.

    Tagliasacchi M, Valenzise G, Tubaro S (2009) Hash-based identification of sparse image tampering. IEEE Trans Image Process 18(11):2491–2504

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Varodayan D, Lin YC, Girod B (2012) Adaptive distributed source coding. IEEE Trans Image Process 21(5):2630–2640

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Venkatesan R, Koon SM, Jakubowski MH, Moulin P (2000) Robust image hashing. In: International Conference on Image Processing, pp 664–666

  27. 27.

    Xiao D, Deng M, Zhu X (2015) A reversible image authentication scheme based on compressive sensing. Multimed Tool Appl 74(18):7729–7752

    Article  Google Scholar 

  28. 28.

    Yang Y, Zhou J, Duan F, Liu F, Cheng L-M (2016) Wave atom transform based image hashing using distributed source coding. J Inf Secur Appl 31:75–82

    Google Scholar 

  29. 29.

    Yang H, Qing L, He X, Ou X, Liu X (2017) Robust distributed video coding for wireless multimedia sensor networks. Multimed Tool Appl. https://doi.org/10.1007/s11042-016-4245-x

  30. 30.

    Zhao Y, Wang S, Zhang X, Yao H (2013) Robust hashing for image authentication using Zernike moments and local features. IEEE Trans Inf Forensics Secur 8(1):55–63

    Article  Google Scholar 

  31. 31.

    Zhou J, Wong K-W, Yang Y (2015) Distributed arithmetic coding with interval swapping. Signal Process 116:29–37

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported in part by the National Natural Science Foundation of China (Grant No. 61601337), by the Fundamental Research Funds for the Central Universities (WUT: 2017IVB025), by the National High-tech R&D Program of China (863 Program) (Grant No.2015AA015403), by the Science & Technology Pillar Program of Hubei Province (Grant No. 2014BAA146), by the Fundamental Research Funds for the Central Universities (Grant No. 175210005) and by the Key Natural Science Foundation of Hubei Province of China (Grant Nos. 2015CFA059, 2015CFA069).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junwei Zhou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, F. & Cheng, L. Image authentication using distributed arithmetic coding. Multimed Tools Appl 77, 15505–15520 (2018). https://doi.org/10.1007/s11042-017-5130-y

Download citation

Keywords

  • Security
  • Distributed arithmetic coding
  • Image authentication
  • Distributed source coding